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Annotation 

The study of boundary value problems for an equation of composite type is a relatively 

new direction in the theory of boundary value problems. These problems are of 

particular interest in connection with their application in various problems of 

mechanics and physics, such they arise when modeling heat and mass transfer in 

capillary-porous media of a number of different biological objects and other problems. 

The present work is devoted to the study of boundary value problems for a third-order 

equation of a shifted composite type. 
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Introduction 

In a simply connected region D bounded by a smooth line  , based on dots (0;1)A  and 

(1;0)B  located in a quarter plane ( 0, 0)x y   and segments 1 1, ,AA BE AE  directly 

0, 1, 1x x y    respectively, where ,O E   points with coordinates (0,0), (1,1)  the 

equations 

  0Lu
x





,                                                              (1) 

where 
1 sgn 1 sgn

2 2
xx yy y

y y
Lu u u u

 
   . 

Task 1. Find a function ( , )u x y  with the following properties: 
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1. Function ( , )u x y  is a regular solution of Eq. (1) in the domain ( 0)D y  .  

2. Function ( , )u x y  and its partial derivatives of the first order are continuous in a 

closed region (it is assumed that at the points (0,0), (1,0)O B  partial derivatives 

,x yu u  can go to infinity of order less than one). 

3. Function  ( , )u x y  satisfies the boundary conditions. 

1

1

1

1

( ), ( ), (0, ) (0, ) ( ),

( ), ( ),

BE AA

x AA

u f u y u y u y y

u
u y f

n





  

 

    


 



               (2) 

where 1 1, , , ,f f      given functions that satisfy certain smoothness conditions and 

matching conditions, and ( )y   smooth function. 

Task 2. Find a function ( , )u x y  with the properties of problem 1 except for the 

boundary condition 1( )BEu y , which is replaced by the condition 

1 (0 1)x BEu u e    . 

When studying these problems, we will use the factor that any regular solution to Eq. 

(1) can be represented in the form 

( , ) ( , ) ( ),u x y z x y y                                           (3) 

respectively [1-6], where ( , )z x y   regular solution of the equation 

1 sgn 1 sgn
0

2 2
xx yy y

y y
u u u

 
   .                                (4) 

Denoting 
1

2

( ), 0 1,
( )

( ), 1 0,

y y
y

y y






 
 

  
 2( , )x y   arbitrary doubly continuously 

differentiable function, 1( )y   arbitrary continuously differentiable function. 

Without loss of generality, we can assume (0) '(0) 0   . It is assumed that it lies 

entirely in the strip bounded by the straight line 0, 1x x  .  

Without loss of generality, we can assume that (0) '(0) 0   .  

Based on (3) and (2), problem 2 is reduced to determining a regular solution (4) in 

the D domain satisfying the boundary conditions 

1

1

2 1 1

1 2

'

1 1

( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ) ( ),

( ), ( ) ( ) .

BE

OA OA

x AA

z f y z y y

z y y z y y y

z y
z y f y

n





   

    

  


   

    

 
  

 

                  (5) 
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The uniqueness of the solution to Problem 2 follows from the extremum principle. (It 

is assumed that 0
x

n





 along the arc  ). 

Let's define 
1( )x . Delivering value 

1( )x  into the formula  

1 2 0

1 1

0 3 /2 1

( , ) ( ) ( , ; ,0) ( ) ( ) ( , ;0, )
G

z x y t G x y t dt f d t G x y t dt
n







   





  

    

have 
2

2 1

3 /2

( , ) (sin ) ( , ; ) ( , ),z x y x y d P x y





                            (6) 

1( , ; ), ( , )x y P x y    known functions realizing the last condition from (5), to determine 

'

2( )y  we obtain the singular integral equation (3). 
2 2

0 0 1 0 1 0 0
0 0

0 03 /2 3 /2

2 2

0 2 0 2 0 0 0
0

03 /2 3 /2

2

0
1 0 2 0

3 /2

cos ( ) sin ( , ) ( , )
( )sin ( )

2 2

cos ( , ) ( , ) cos
( ) ( , ) ( )cos

2 2

cos
( , ) ( )cos ( ),

2

K K
d d

K K
d Q d

Q d

 

 

 

 





       
      

     

     
        

   


       




  

 


  



 

 

 



     (7) 

Where '

2 1 0 2 0 0 1 0( ) (sin ); ( , ), ( , ), ( , ), ( , )K K Q Q              known features. 

From equation (7) we define the function 2( )y . So the function ( , )u x y  completely 

determined in the region 2D . 

Solution of equation (4) satisfying the boundary conditions 

11( ) ( ), ( ), ( )BE OB x A Bz y y z x z y        

is determined by the formula 

1 1

0 0

0

( , ) ( ) ( , ;0, ) [ ( ) ( )] ( , ;1, )

( ) ( , ; ,0) ,

y y

y

z x y t G x y t dt t t G x y t dt

t G x y t dt

  



   



 



           (8) 

where ( , ; , )G x y     Green's function. 

Function ( , )z x y , defined by formula (2) must satisfy the condition 
1 1( ) ( )OAz y y  

, 
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1

0 0

1

0

( ) ( ) ( ) (0, ;0, ) ( ) (0, ; ,0)

[ ( ) ( )] (0, ;1, ) .

y y

y

y y t G y t dt t G y t dt

t t G y t dt

   

 

   

 

 



            (9) 

Realizing the condition 
1 2( ) ( ) ( )OAz y y y       have  

2 2 1( ) ( ) ( ) (sin ) (0, , ) (0, )y y y y d P y           .             (10) 

Delivering value ( )y  into formula (9) to determine 1( )y , we obtain the Volterra 

integral equation of the second kind 

1 1 2

0

( ) ( , ) ( ) ( )

y

y K y t t dt P y   ,                                     (11) 

where 2( , ), ( )K y t P y   known features. 

Equation (11) uniquely determines the function 1( )y .  

Problem 2 is reduced to finding a regular solution to equation (5) satisfying the 

boundary conditions 

1

1

2 1 1

1 2

'

1 2

( ) ( ), ( ) ( ),

( ) ( ), ( ) ( ) ( ),

( ) ( ) ( ) .

x e BE

OA OA

x AA

z f y z z y y

z y y z y y y

z z
z y f y

n n





   

    

  




    


     


    
  

                      (12) 

Through 1( ), ( )y y   values are marked accordingly (0, ), (1, ) (0 1)u y u y y  . 

The uniqueness of the solution to problem 2 is proved using the maximum principle 

under the assumption that 0
x

n





 along the line.  

The existence of a solution to problem 2 of the region 2D  is defined as in the case of 

problem 1, the solution to equation (5) satisfying the boundary conditions 

11 1( ) ( ), ( ), ( )BE OB x OAz y y z x z x       , 

is given by the formula 
1

0 0

1 1

0

( , ) ( ) ( , ;0, ) ( ) ( , ; ,0)

[ ( ) ( )] ( , ;1, ) ,

y

y

z x y t G x y t dt t G x y t dt

t t G x y t dt

 

 

  

 

 



                    (13) 

( , )z x y  must satisfy the condition  
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1 1( ) ( )z ez y y    , 

1 1 1 1

0

1

0 0

( ) ( ) [ ( ) ( )] ( , ;1, )

( ) ( , ;0, ) ( ) ( , ; ,0) .

y

y

y y t t G e y t dt

t G e y t dt t G e y t dt

   

 

   

 



 

                          (14) 

Integral equation (14) is a Volterra integral equation of the second kind, which 

uniquely determines 1 1( ) ( )y y  .  

Realizing the condition 
1 1( ) ( )OAz y y    from (13) find 

1 1 1

0

1 1

0 0

( ) ( ) [ ( ) ( )] ( , ;1, )

( ) ( , ; ,0) ( ) ( , ;0, ) .

y

y y t t G e y t dt

t G e y t dt t G e y t dt

   

 

   

 



 

                     (15) 

Delivering value 
1 1( ), ( ) ( )y y y    into the formula (15) define the function 

1( )y , 

где ( )y  is found from the formula (8). 
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