

COMPARISON OF TECHNICAL AND ECONOMIC PERFORMANCE OF WIRE AND CHAIN TRACKS USED IN STRENGTHENING LOADS IN OPEN TRAFFIC

Ilesaliev Daurerbek Ixtiyarovich

Doctor of Sciences, Professor, Department of "Cargo transportation systems" Tashkent State Transport University. 1 Temiryulchilar St., Tashkent, Uzbekistan, 100069,

Jamol Shihnazarov Alisherovich

Assistant Department of "Cargo Transportation Systems" Tashkent State Transport University. 1 Temiryulchilar St., Tashkent, Uzbekistan, 100069 Author Emails Corresponding author: jamol.alisherovich@mail.ru

Diyor Boboev Shomuratovich

Assistant Department of "Cargo Transportation Systems" Tashkent State Transport University. 1 Temiryulchilar St., Tashkent, Uzbekistan, 100069

Elbek Shermatov Sirojiddinovich

Assistant Department of "Cargo Transportation Systems" Tashkent State Transport University. 1 Temiryulchilar St., Tashkent, Uzbekistan, 100069

Abduraximov Ozodbek O'tkir o'g'li

Assistant Department of "Cargo transportation systems" Tashkent State Transport University. 1 Temiryulchilar St., Tashkent, Uzbekistan, 100069

Annotation:

The article discusses the first procedures for the correct placement of goods, the choice of securing means in order to fully comply with the traffic safety requirements when placing and securing goods on railway transport. In addition, it is shown that it is important to use the fasteners optimally, to correctly select the types of fasteners depending on the type of load and to determine their number in the prescribed manner using calculations.

Keywords

Wagon, fastening, chain, wire rope, traffic safety, economic performance, impact forces, fastening tools, open movement structure.

Introduction

One of the important factors in the open rolling stock is the placement of cargo in accordance with the established scheme, the effective use of loading and unloading mechanisms, the proper organization of the transport process and ensuring the safe delivery of cargo. Ensuring traffic safety requires the placement of loads on open rolling stock and the use of the correct means of fastening.Fastening of loads to open and closed rolling stock in railway transport can be done with pulls, fasteners, beams, cassettes, pyramids, nails, turnstile supports and other fastening elements according to the shape, parameters, nature of possible displacement and other factors. [1, 3, 5, 10, 13]. In the selection of fasteners, along with the strength of the fastening element, the task is to make it a cost-effective option, ie to achieve high quality at a lower cost. We analyze the technical and economic performance of c `hains and wire ropes, which are widely used in fastening loads.

Methods

Based on the above drawing, the structure of chain and wire ropes, taking into account the impact strength and parts of fasteners, allows the shipper to choose an alternative type of cable by comparing the technical and economic performance of chain and wire ropes [2, 4, 7, 9, 11-15].

Using the given formula it is possible to calculate the cost of a chain set (taking into account the ratio of forces acting on the diameter).

$$C_a = 2 \cdot m + d + l_a \cdot s_i, \text{thousand sum}$$
(1)

m-the cost of the chain hook;

d – the price of the chain drive;

 l_a - the length of the chain required to fasten the load;

 $s_i - 1$ meter chain price (i=1-5;)

The value of the ratio of the forces acting on the set of chains (hook + chain + fastener + hook) to the diameter and length by the calculation formula is given in detail in Table 1.1

WEB OF SCIENTIST: INTERNATIONAL SCIENTIFIC RESEARCH JOURNAL

ISSN: 2776-0979, Volume 3, Issue 6, June, 2022

		Tabl	le 1.1		
Permissible force, kN	3,2 kN	5,7 kN	9,0 kN	10,7 kN	22,9 kN
Chain diameter, mm	6 mm	8 mm	10 mm	13 mm	16 mm
Length,m	Cost(thousand suм)	Cost(thousand suм)	Cost(thousand,sum)	Cost (thousand, sum)	Cost (thousand, sum)
1	280	352	413	603	809
2	308	393	474	700	962
3	336	434	535	797	1115
4	364	475	596	894	1268
5	392	516	657	991	1421
6	420	557	718	1088	1574
7	448	598	779	1185	1727
8	476	639	840	1282	1880
9	504	680	901	1379	2033
10	532	721	962	1476	2186
For each additional 1m:	s ₁ = 28	s ₂ =41	s ₃ =61	s ₄ = 97	s ₅ =153

The cost of the required length of wire rope (relative to the diameter) is determined by

 $C_i = c_i \cdot l_h \cdot n$, thousand sum

(2)

 c_i - Price of 1 meter wire rope (i=1-7);

n--number of rope windings;

 l_b -the length of wire required to fasten the load;

(2) The values of the ratio of the forces acting on the wire rope to the diameter and length are given in detail in Table 1.2.

			Table 1.	2.			
Number of	Forces act	Forces acting on the diameter of the cable, kN;					
packages	4mm	4,5мм	5мм	5,5мм	бмм	6,5мм	7мм
2	2,7	3,5	4,3	5,3	6,2	7,3	8,5
3	4,2	5,3	6,5	7,8	9,4	11,0	12,7
4	5,5	7,1	8,6	10,5	12,4	14,7	17,0
5	6,8	8,8	10,8	13,1	15,5	18,3	21,5
6	8,4	10,7	12,9	15,8	18,7	22,0	25,2
Price relative to the diameter of wire ropes, 1m (in soums):	c ₁ =880	c ₂ =1110	c ₃ =1370	c ₄ =1660	c ₅ =1980	c ₆ =2320	c ₇ =2690

An alternative type of fastener must be used to secure the loads against longitudinal and transverse shear. One of the most important factors in ensuring traffic safety is

the type and number of uses, taking into account the forces acting on the fasteners. [4, 12, 14, 16]

Taking into account the results of the calculations in Table 1.1 -1.2, the price ratio is determined using the formula N by comparing the cost of chain ropes and the length of the wire rope in the forces acting on each other in the fastening of loads:

$$N = \frac{C_a}{C_i}, \text{ once}$$
(3)

Here: *N* is an integer rounded to the nearest whole number.

The prices of chain and wire ropes are shown in the following graphs, taking into account the forces acting on the fastener and the length.

Results

A comparison of the cost of 6 mm diameter chain rope and 4.5 mm diameter 2 coil wire ropes is given in Table 1.3.

Table 1.3.							
Length, meters	10	15	20	25	30	35	40
C _a ,thousa nd sum	532	672	812	952	1092	1232	1372
C _i , thousand sum	22,2	33,3	44,4	55,5	66,6	77,7	88,8
Ν	24	21	19	18	17	16	16

1.4 graphics. Graphical representation of the price of chain and wire ropes.

A comparison of the cost of 8 mm diameter chain ropes and 4 mm diameter 4 winding wire ropes is given in Table 1.4.

Table 1 1

14010 1.4							
Length,meters	10	15	20	25	30	35	40
Ca, thousand							
sum	721	926	1131	1336	1541	1746	1951
C_i , thousand							
sum	35,2	52,8	70,4	88	105,6	123,2	140,8
Ν	21	18	17	15	15	15	14

2-graph. Graphical representation of the price of chain and wire ropes.

A comparison of the cost of a 10mm diameter chain rope and a 6 mm diameter 3-wire wire rope is given in Table 1.5.

Table 1.5

Length, meters	10	15	20	25	30	35	40
C _a , thousand sum	962	126 7	1572	1877	2182	2487	2792
C _i , thousand sum	59,4	89,1	118,8	148,5	178,2	207,9	237,6
Ν	17	15	14	13	13	12	12

3-graph. Graphical representation of the price of chain and wire ropes.

A comparison of the cost of 13 mm diameter chain rope and 5 mm diameter 5 coil wire ropes is given in Table 1.6.

Table 1.6							
Length,m eters	10	15	20	25	30	35	40
C _a , thousand sum	1476	1961	2446	2931	3416	3901	4386
C _i , thousand sum	68,5	102,75	137	171,25	205,5	239,75	274
Ν	22	20	18	18	17	17	17

4-graph. Graphical representation of the price of chain and wire ropes.

A comparison of the cost of 16 mm diameter chain ropes and 6.5 mm diameter 6 coils of wire ropes is given in Table 1.7.

Table 1.7							
Length,m eters	10	15	20	25	30	35	40
C _a , thousand sum	2186	2951	3716	4481	5246	6011	6776
C _i , thousand sum	139,2	208,8	278,4	348	417,6	487,2	556,8
Ν	16	15	14	13	13	13	13

8000 6776 7000 6011 5246 6000 **Dverall** price 4481 5000 3716 4000 2951 3000 2186 2000 139.2 208.8 278.4 348 417.6 487.2 556.8 1000 0 10 40 0 20 30 50 Required cable length

5-graph. Graphical representation of the price of chain and wire ropes.

- The choice of an alternative fastening tool by the shipper depends on several factors[5]:
- Cost of fastening tool;
- Number of uses;
- High security;
- The amount of time spent on strengthening;
- Strength;
- Shelf life;
- Lack of load displacement.

When choosing the optimal option of fastening means, the consignor can choose its several advantages and disadvantages on the basis of the basic data in Table 1.8.

Table 1.8

Use of chain rope		Use of wire rope	
Advantage	Disadvantage	Advantage	Disadvantage
Fastening loads to	For goods transported	Low cost compared to	Attaching loads to
wagons is done more	in one direction, there	chain rope	wagons is done more
easily than with a wire	is a cost of re-shipping		complicated than with a
rope.	the cable to the shipper		chain rope.
Reusable use is	Tross is not available at	Availability at almost	Disposable
available	all shipping stations	all loading stations	
Strength of load against	High cost compared to	It is possible to re-sit in	The formation of the
longitudinal and	wire rope.	case of failure during	elongation of the wire
transverse		transportation.	rope at the expense of
displacement[6]			the forces acting during
			the movement

Discussion

Through his research, he has been able to help shippers make efficient use of the chain and wire ropes used to place and secure cargo in open rolling stock. Tables 1.3 - 1.7, taking into account the forces acting, determined the number of replications of the value of the chain rope N through the ratio of Ca to Ci. [7, 8, 9-16] Of course, in order to fully comply with the requirements of traffic safety in the placement and fastening of goods on the rolling stock in railway transport, it is necessary to correctly place the goods on the basis of established criteria. In addition, it is important to choose the right means, materials, types of fastening cargoes and determine their number in the prescribed manner using accurate calculations, economic indicators.

Conclusion:

A method of quantifying the number of alternating wire trosses used instead of chain trosses has been developed. In the safe implementation of the transportation process, along with the correct placement of cargo on the wagons, the choice of fasteners is calculated on the basis of technical and economic indicators.

References

- 1. Technical conditions for placement and securing of cargo, Tashkent-2015, 712 p.
- 2. X.T. Turanov, Y.O. Ruzmetov, J.A. Shikhnazarov. To the calculation of the fastening of a solid weight under the influence of longitudinal forces, Modern problems of the transport complex of Russia, vol. (10), no 1, 2020.
- 3. Y.O Ruzmetov, J.A. Shikhnazarov. About fastening cargo on the wagon under the influence of transverse forces, Journal of Tashkent Institute of Railway Engineers, vol. (16), no 2, pp. 28–38. (2020)

- 4. X.T. Turanov, Y.O. Ruzmetov, J.A. Shikhnazarov. Incorrectness of the method of calculating cargo fastening on railway platforms, E3S Web of Conferences, Volume 164 pp, 28-38. (2020)
- 5. J.A. Shikhnazarov, D.Sh.Boboyev. Analysis of efficient use of wagons in the process of delivery of railway transport, OOO «Academic Research», vol. (2), no 5, pp. 210–216. (2021)
- 6. K.T. Turanov, S.U. Saidivaliev, D.I. Ilesaliev. Determining the kinematic parameters of railcar motion in hump yard retarder positions / K.T. Turanov, S.U. Saidivaliev, D.I. Ilesaliev // Structural integrity and life vol. 20, no 2 (2020), pp. 143–147.
- Andersson N., Andersson P., Bylander R., Sökjer-Petersen S., Zether B. Equipment for Rational Securing of Cargo on Railway Wagons / VINNOVA -Swedish Agency for Innovation Systems. Stockholm, 2004. 233 c.
- 8. URL:https://trimis.ec.europa.eu/sites/default/files/project/documents/200409 06_091708_35258_Report_jvgRASLA.pdf
- Johansson M. A. P. Equipment for Efficient Cargo Securing and Ferry Fastening of Vehicles / Swedish Association of Road Havlage Companies. Borlänge, Sweden, 2004. 31 c. URL: https://nvfnorden.org/wpcontent/uploads/2020/10/2004-Equipment-for-Efficient-Cargo-Securing-and-Ferry-Fastening-of-Vehicles.pdf.
- 10. Driver's Handbook Cargo Securement: A Guide to the North American Cargo Securement Standard [Электронный ресурс].
- 11. URL:https://www.fmcsa.dot.gov/sites/fmcsa.dot.gov/files/docs/Drivers_Handb ook_Cargo_Securement_508CLN.pdf.
- 12. European Best Practice Guidelines on Cargo Securing for Road Transport [Электронный ресурс].
- 13. URL: https://www.freight train.co.uk/downloads/Cargo_Securing_Guidelines.pdf.
- Priddy J. D., Jones R. A. Experimental Determination of the Effect of Cargo Variations on Roll Stability // SAE Technical Paper Series. SAE International, 2005/11/01. https://www.doi.org/10.4271/2005-01-3516.
- 15. Safety of loads on vehicles: Code of practice. 3-е изд. London: Department for Transport, 2002. 123 с.
- 16. Asia Industrial Gases Association. Vertical cylinder handling and transportation [Электронный ресурс].
- 17. URL:http://www.asiaiga.org/uploaded_docs/AIGA%20038_06%20Vertical%2 ocylinder%20handling%20and%20trans portation reformated%20Jan%2012.pdf.

- Shukhrat Saidivaliev, Ramazon Bozorov, Elbek Shermatov. Kinematic characteristics of the car movement from the top to the calculation point of the marshalling hump. E3S Web of Conferences 264, 05008 (2021) https://doi.org/10.1051/e3sconf/202126405008
- Ilesaliev, I. I., Makhmatkulov, S. G., & Abduvakhitov, S. R. (2020). Peculiarities of Container Terminal Functioning in Delivery Chains. IOP Conference Series: Materials Science and Engineering, 918, 012043. doi:10.1088/1757-899x/918/1/012043
- 20. Daurenbek I. Ilesaliev, Shahboz R. Abduvakhitov, Azizbek F. Ismatullaev, Shakhobiddin G. Makhmatkulov (2019). Research of the Main Storage Area of the Container Terminal. International Journal of Engineering and Advanced Technology (IJEAT). Volume-9 Issue-1, October 2019. doi:10.35940/ijeat. A2923.109119.

