

TO INVESTIGATE THE MATHEMATICAL MODELING OF THE PROPERTIES OF EFFECTIVE CERAMIC PASTE WITH BURNT ADDITIVES FROM AGRICULTURAL WASTE

Bekchanov Humoyun Lecturer at Urgench State University, Uzbekistan, Urgench

Abstract

Results of scientific research on determination of optimum prescription and technological parameters of effective ceramic brick with burn-out additives, obtained by the method of mathematical planning of experiments are given in the article.

Keywords: porous ceramics, brick, burn-out additives, mathematical planning of experiments, a dosage of technological additive, forming moisture content, pressure in an extruder.

At present, with increasing regulatory requirements for thermal resistance of external enclosing structures of residential buildings in the Republic of Uzbekistan, a special attention is paid to the issue of increasing the thermal insulation characteristics of the traditional and most affordable local building material ceramic bricks. One way to increase the thermal insulation properties of ceramic bricks is an addition of organic burn-out additives to the clay mass. This method, along with a significant increase in the porosity of ceramic crock, also allows the utilization of massive industrial and agricultural waste.

Urgench State University and Construction for several years has been conducting theoretical and experimental research to substantiate the possibility of obtaining a highly effective ceramic brick with technological additives based on cotton stems – "guza-paya".

This article presents the results of mathematical modeling of the properties of effective ceramic bricks with burn-out additives from agricultural waste. To model the properties of effective ceramic bricks, the method of mathematical planning of experiments is used [1].

In the process of modeling, the following prescription and technological parameters are chosen as variable factors:

- x_1 dosage of technological additive in % of clay mass;
- x₂ forming moisture content, %;

 x_3 - pressure in the extruder, MPa.

Intervals and levels of factor variation are presented in Table 1.

The levels of remaining factors are stabilized for thewhole experiment. The firing of samples is carried out at temperature 1000°C.

B3 type of experiment plan is chosen as a planning matrix.

To implement the planning matrix, samples have been produced and tested in accordance with the current governmental standards. The main characteristics of the plan and the experiment plan in coded and natural values of variables are presented in Tables 1 and 2.

	Value of	X ₂ X ₃		
Code	code	Dosage of technological additive, %	Forming moisture content, %	Pressure in the extruder, MPa
Basic level	0	10	20	1,2
Variation interval		5	4	0,2
Upper level	+1	15	24	1,4
Lower level	-1	5	16	1,0

Table 1. Main Characteristics of the Plan

During the tests at a temperature of 1000°C, the structural strength of freshly formed samples, their average density and compressive strength were established.

Average values of experimental data for each point of the plan are given in Table. 2. As a result of experiment plan implementation, compositions of ceramic masses which differ in a wide range of physical-mechanical properties were obtained by the method of plastic forming. The range of changes in experimental values of indicators is given in Table 3.

WEB OF SCIENTIST: INTERNATIONAL SCIENTIFIC RESEARCH JOURNAL ISSN: 2776-0979 (Volume 2, Issue 5, May, 2021)

Table 2. Experiment pl	lan in coded and r	natural values of var	riable factors
------------------------	--------------------	-----------------------	----------------

No of	Experin	nent pla	an	Natural values of experiement		
experiments	X1	X ₂	X ₃	X1	X ₂	X ₃
1	+1	+1	+1	15	24	1,4
2	+1	+1	-1	15	24	1,0
3	+1	-1	+1	15	16	1,4
4	-1	+1	+1	5	24	1,4
5	-1	-1	-1	5	16	1,0
6	-1	+1	+1	5	24	1,4
7	-1	-1	-1	5	16	1,0
8	+1	-1	-1	15	16	1,0
9	+1	0	0	15	20	1,2
10	-1	0	0	5	20	1,2
11	0	+1	0	10	24	1,2
12	0	-1	0	10	16	1,2
13	0	0	+1	10	20	1,4
14	0	0	-1	10	20	1,0
15	0	0	0	10	20	1,2

Table 3. Results of experiment plan implementation

No of experi	Levels of variation factors			Average results	Average values of experimental results			
ments	X ₁	X2	X ₃	R _{crp} , MPa	R _{сж} , MPa	$\rho_{cp}, kg/m^3$		
1	+1	+1	+1	2,07	10,45	1080		
2	+1	+1	-1	1,48	10,35	1045		
3	+1	-1	+1	1,70	6,80	1096		
4	-1	+1	+1	1,51	8,15	1042		
5	-1	-1	-1	0,67	4,40	980		
6	-1	+1	+1	1,01	5,55	1020		
7	-1	-1	-1	1,23	5,70	1005		
8	+1	-1	-1	1,19	5,00	986		
9	+1	0	0	1,85	9,25	1065		
10	-1	0	0	1,36	5,15	1035		
11	0	+1	0	1,71	8,65	1070		
12	0	-1	0	0,93	5,55	1032		
13	0	0	+1	1,86	7,92	1062		
14	0	0	-1	1,25	5,27	1019		
15	0	0	0	1,70	6,96	1052		

Table 4. Range of changes in main quality indicated	
	atore
1 abic 4. Range of changes in manify mult	uois

Structural strength of raw material, MPa	Strength limit of brick under compression, MPa	
0,067-2,07	5,00-10,45	986-1096

The results of experiment plan implementation (Table 5) were processed using the methods of mathematical statistics [2].

No of experi	Levels of variation factors			Average values of experimental results		
ments	X1	X ₂	X ₃	R _{crp} , MPa	R _{сж} , MPa	$ ho_{cp}, kg/m^3$
1	+1	+1	+1	1,89	10,46	1075,96
2	+1	-1	-1	1,31	10,58	1039,56
3	+1	+1	+1	1,49	7,32	1052,26
4	-1	+1	+1	1,37	7,74	1046,36
5	-1	-1	-1	0,43	4,04	968,26
6	-1	+1	+1	0,77	5,64	1022,66
7	-1	-1	-1	1,03	5,5	1009,96
8	+1	-1	-1	0,91	5,08	997,86
9	+1	0	0	1,65	8,95	1063,68
10	-1	0	0	1,15	5,57	1034,28
11	0	+1	0	1,4	9,05	1066,68
12	0	-1	0	0,9	5,25	1033,98
13	0	0	+1	1,63	7,75	1062,28
14	0	0	-1	1,17	5,51	1016,88
15	0	0	0	1,40	6,81	1056,19

Table 5. Calculated values of experimental results

After processing the results obtained, the following polynomial models, adequately describing the relation*ship between the properties studied and initial factors have been obtained:

structural strength of raw materials, MPa:

 $R_{crp}=1,60+0,25X_1+0,25X_2+0,23X_3-0,25X_2^2-0,05X_1X_2+0,06X_1X_3;$ (1)

strength of ceramic bricks under compression, MPa:

 $R_{cm} = 6,81+1,69X_1+1,9X_2+1,12X_3+0,45X_1^2+0,34X_2^2-$

 $0,18X_{3}^{2}+1,01X_{1}X_{2}+0,16X_{1}X_{3}+0,16X_{2}X_{3};$ (2)

average density of ceramic bricks; kg/m3:

 $\rho_{cp}=1056,19+14,8X_1+16,35X_2+22,7X_3-7,11X_{1^2}-5,86X_{2^2}-16,61X_{3^2}-4,5X_2X_3;$ (3)

Obtained mathematical models of density and strength under compression of ceramic crock after processing according to the "Optim" program allow to determine the optimum prescription and technological parameters for obtaining effective ceramic brick of required (in strength and density) brand; they are: -dosage of technological additive - 5.8% of clay mass; - forming moisture content - 20.1%; pressure in the extruder - 1.25 MPa.

References:

- 1. Zazimko V.G. Optimization of Building Materials Properties / V.G. Zazimko. Moscow: Transport, 1981. 103 p.
- 2. Voznesensky V.A. Statistical Methods of Experiment Planning in Technical and Economic Studies. Moscow: Statistics, 1981. Pp.152-250.
- 3. Anwar Adylkhodzhaev, Allanazar Ilyasov scientific article on mathematical modeling of the properties of effective ceramic brick with burn-out additives from agricultural wastes. 2018

