

NEW REGENERATOR DESIGN FOR REGENERATION OF RAW COTTON VOLES FROM NON-GINNED SEEDS

Babayeva Malikakhan Nabijon kizi

(Fergana Polytechnic Institute)

Annotation

This article provides information about the operating parameters and efficiency of regeneration, a new design of a regenerating device for under-ginned seeds, before the linting process.

Keywords: seeds, under-ginned seeds, saw drum, feeder, needle drum, brush drum. Our country is one of the world's leading producers and exporters of cotton. That is why the cotton growing and processing industry plays an important role in the country's economy.

Introduction

Uzbekistan mainly produces hairy and dehydrated seeds. In recent years, low-hair seed technology has also been introduced.

Seed production is carried out in accordance with the "Technological regulations for the processing of raw cotton and seed production." The regulations define the basic requirements for the technology of preparation of hairy, mechanically dehaired and low-hairy seeds, including the process of treatment and coating.

The main technological process of ginneries, which is the process of separation from fibrous seeds, determines the characteristics of the output of seed cotton. If the process of fiber separation from the seeds is carried out as required, and the transfer of seeds from the separated seeds with spinning fibers to the technological process of separation and re-ginning will increase the share of fiber yield of seed cotton. Currently, RNS regenerators are used in ginneries.

The structure of the seed regenerator RNS with incompletely separated fibers is shown in the figure. and a brush separation drum (6). The operating mode of the regenerator is based on the interaction of the separated fibers with the saw teeth of the rotating drum (3). [1]

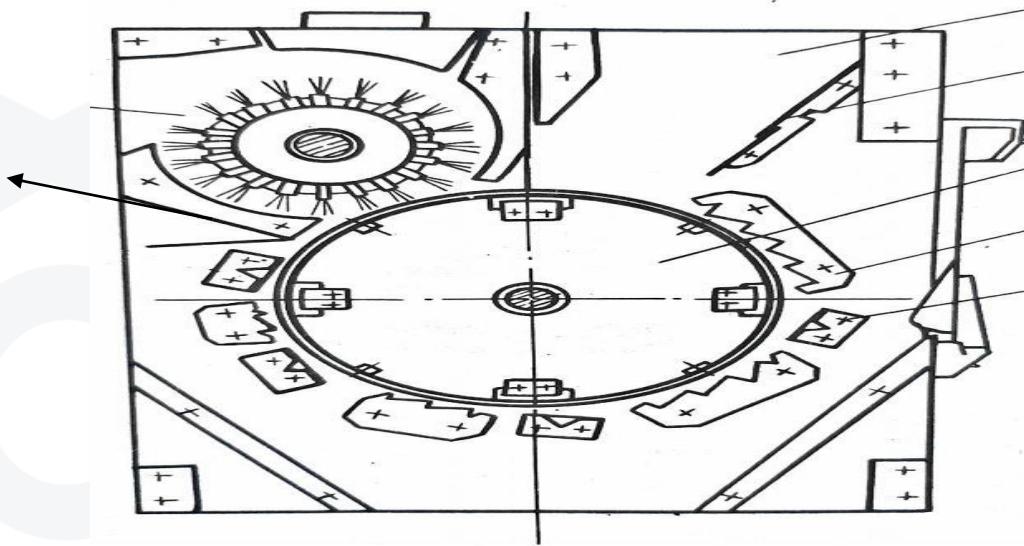
It is regenerator USM-A can be installed after the pneumatic seed cleaner or after the elevator before linting on the distribution auger head.

The main indicator of the regenerator is that in order to completely separate the fibers in the regenerated seed, ie the fiber in the seed, the above RNS device is replaced by a needle drum instead of a drum. the device has been improved to increase regeneration

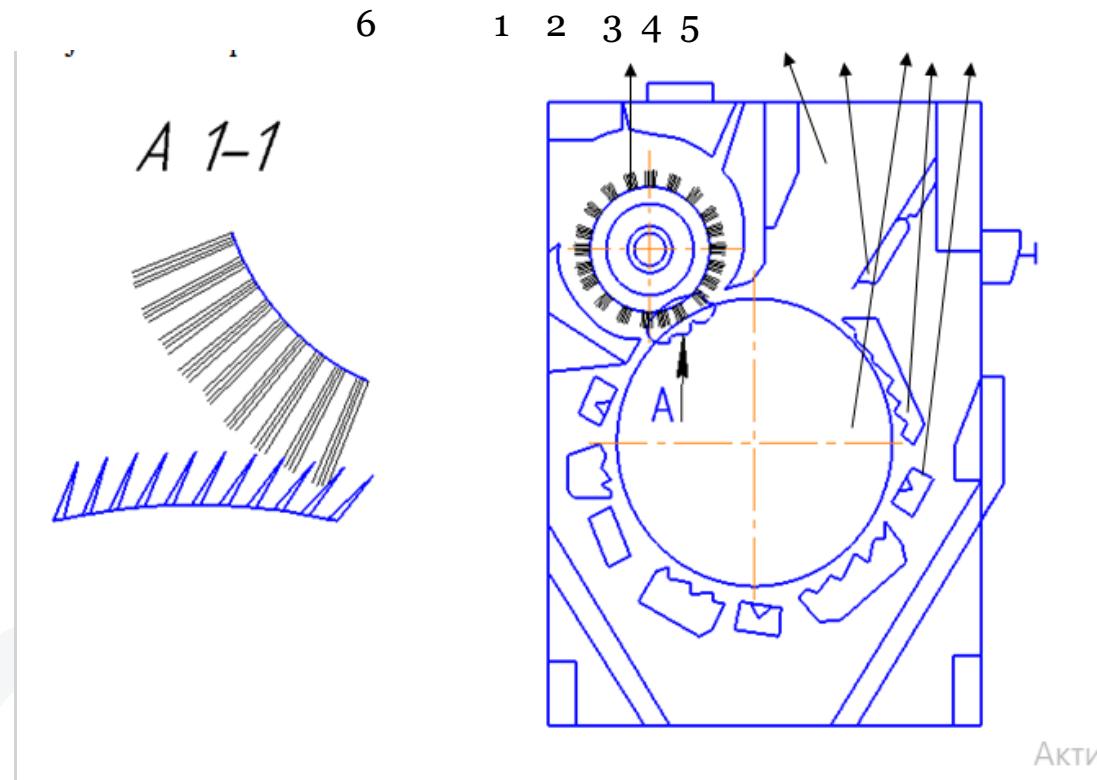
efficiency. The working dimensions of the needle drum have been developed and constructed.

The device consists mainly of a rotary drum with a saw set and a brush drum to separate completely unfertilized seeds from the seeds and transfer them to the ginning process. But today, as new generations of cotton selections are created, it also affects some of the processes of the seed cotton processing plant.

The results of scientific research show that this condition has a greater impact on the technological processes of ginning, leading to an increase in the number of fibrous seeds in the fiber separated from the seed.


Therefore, it is necessary to improve the device that separates the fibrous seeds from the contaminated seeds. Therefore, the design of the RNS regeneration device currently in use was developed. (Figure 1)

The proposed structure regenerates the seeds that are lifted by an elevator into the flow of processes that transmit the seeds from the demon through this structure and then transferred to the linter machines.


The seeds are picked up by a needle drum, and the fibrous seeds attached to the surface of the needles are removed with a drum brush and passed to the ginning process.

The fibrous seeds in the needle drum allow for complete separation from the saw blades used.

The design of the main working parts of this device has already been developed, and the first experimental tests are planned.

1-Figure.1-supply line, 2- router, 3-saw drum, 4- kolosnik cage ,
5- router, 6-brush drum

2-Figure. 1-Supply pipe , 2- guide , 3-needle, 4-column grate, 5-guide, 6- brush brush

Conclusion

The main indicator of regenerators is the regeneration efficiency, which is determined by the amount of fiber in the fiber, which is not separated from the fiber, or the amount of regenerated fiber.

Adjustment of the regeneration process is carried out by changing the technological holes of the regeneration device, depending on the initial quality parameters of these seeds. The results of the application of the advanced regeneration device fully meet the above-mentioned characteristics, the technological gaps, ie the distance between the supply drum guide and the needle drum to 20-50 mm, the spacing of the needles with the grate by adjusting to 13 ± 2 mm, regeneration efficiency is increased by 33%

Foydalanilgan adabiyotlar ro'yxati

1. E. Zikriyoyev Paxtani dastlabki qayta ishlash Toshkent. "Mexnat" 2002-yil
2. R. A. Gulyayev , A.E. Lugachev, X.S. Usmanov Современное состояние производства, переработки, потребления и качества хлопковой продукции в ведущих хлопкосеющих странах мира. Tashkent-20173-4b

3. Shaimov P. "Сортирование опущенных семян хлопчатника в барабанном диэлектрическом сепараторе", Диссертационная работа 1995 год.
4. Izaqov F.Ya. Теория и вопросы оптимизации процессов обработки семян в электрическом поле коронного разряда:Автореферат дисс.Д.т.н, М, 1971, с.32
5. Yu. Ergashev, A.Sh. Khusanova, M. Babayeva. Analysis of dynamic characteristics of selective technology of sawing // FarPI Scientific-Technical Journal-Fergana 2020 №1 B.252-2555
6. A. Sh. Khusanova. Optimization of geometric dimensions of ginning elements of selective technologies // FarPI "Journal of Scientific Technology" Issue 4. "Optimization of geometric dimensions of ginning elements of selective technologies" Fergana-2020 P.158-160
7. A.Salimov, Sh.A.Khusanova. Analysis of experience in the introduction of modern information and communication technologies in ginneries. Republican scientific-technical conference International scientific-educational electronic journal. №A3-21.10.2020.
8. A.Salimov, O.Salimov, Sh.Khusanova, I.Khakimov "The problems of natural fiber and textile materials on fire resistance" Saarj journal Akademicia: an international multidisciplinary research journal april-2020. <https://saarj.com/wp-content/uploads/special-issue/2020/ACADEMICIA-JULY-2020-SPECIAL-ISSUE.pdf>
9. O.Sh.Sarimsaqov, N.M Sattoriv, Z.A.Siddiqov, Sh.A.Xusanova. Improvement of the Process in Disassembling of Cotton Stack and Transferring the Cotton into Pneumotransport// International Journal of Advanced Science and Technology Vol. 29, No. 7, (2020), pp. 10849-10857
10. Yu.Ergashev, A.Sh.Khusanova, O.Sh.Sarimsaqov, X.Turdiyev, J.Oripov. Selective technologies of sawing Fergana Polytechnic Institute "Selective technologies of sawing madness" "Classic" publishing house-2020 ISBN: 978-9943-6662-7-6.
11. A.Sh. Khusanova, O.Sh.Sarimsaqov, Yu.Ergashev. "Multi-position saw fiber separator" Journal of Innovation in Scientific and Educational Research_V 04/30/2021.
12. A.Salimov, Sh.A.Khusanova, O.Salimov, I.Khakimov. "STUDY OF CONSTRUCTIVE AND TECHNOLOGICAL PARAMETERS OF" INTERNATIONAL SCIENTIFIC AND PRACTICE CONFERENCE ON " INTERNATIONAL EXPERIENCE IN INCREASING THE EFFECTIVENESS OF DISTANCE EDUCATION: PROBLEMS AND SOLUTIONS. journal mai-2020. www.iejrd.com.
- 13 A. Sh. Khusanova, Q. Toshmirzayev. "Selective technologies in sawing" Collection of conference materials
23-24 April 2021.

WEB OF SCIENTIST: INTERNATIONAL

SCIENTIFIC RESEARCH JOURNAL

ISSN: 2776-0979, Volume 3, Issue 7, July, 2022

14. M.X.Axmedov, T.O.Tuychiev, A.A.Ismoilov, Sh.A.Khusanova. "The supply part of the engineering equipment algorithm for evaluation of movement of cotton raw materials out of tarnovi" Scientific-technical journal Volume 4 Issue 3 Article 11 <https://uzjournals.edu.uz/ferpi> 2021, V.4, №3 pp69-74
15. N.Sattorov, Sh.A.Khusanova. "Selective technologies in sawing" Intellectual Property Agency of the Republic of Uzbekistan № DGU08698 06.07.2020.
16. O.Sh.Sarimsaqov, Sh.A.Khusanova, Yu.Ergashev, A.U.Sarimsaqov. "Cotton fiber separator" Intellectual Property Agency of the Republic of Uzbekistan FAP 2021 0058.
- 17 A.Salimov, O.Salimov, Sh.Khusanova, I.Khakimov "The problems of natural fiber and textile materials on fire resistance" Saarj journal Akademicia: an international multidisciplinary research journal april-2020. <https://saarj.com/wp-content/uploads/special-issue/2020/ACADEMICIA-JULY-2020-SPECIAL-ISSUE.pdf>

Website:

<https://wos.academiascience.org>