

149

DESCRIPTION OF THE ARCHITECTURAL SURVEY LANGUAGES

Fryal Jassim Abd Al-Razaq

University of Babylon , IT College , Hillah, Iraq

Safa Saad AL-Murieb

University of Babylon , IT College , Hillah, Iraq

Abstract

The architecture is a broad concept, and the idea of each project / field what the

architecture and what types of data, which should contain. As a result, he introduced

many of the exact scope and general purpose architecture description languages

(ADLS) and use them in various fields, with particular emphasis on architectural

issues. Nevertheless, the ADL and nobody ever appropriate for all projects or fields.

This diversity creates a problem for users of these languages, including: the

implementation of a code division architecture, allowing contradictions, which leads

to confusion, violating the architectural features that prevent the development of

software. To overcome these problems begin to describe the basic elements used to

build some of the recent ADLS including AADL, MetaH, SADL, ArchJava and ACME.

And we also show how these elements interact with each other, and how to use the

restriction to control their behavior. We compared the classification depends on the

support of the attributes of each of these languages (for example, fields, views,

architectural design, construction, interfaces and types, semantics, and restrictions,

volatility, updates, maintenance, easy to use and so on ...) into three main categories

Features-oriented system, linguist and features, as well as in processes intended

function. And finally, we hope that this will result in a building designed structure is

well thought out and very well knows that gives engineers the opportunity to talk

about the system characteristics (such as resistance) at a high level of abstraction, and

is essential to Success of a complex system based on software layout.

Keywords: Software Architecture, ADLs.

1. Introduction

Architecture in the past were mainly representatives of pairs of box and line drawing.

During the past decade has seen considerable progress in research, Development of

concepts, tools, methods and supports for software architects. Many formal

description languages of Architecture (ADLS) -I- have been developed and

implemented in real word applications. Specialized for the architects of the

150

instrument of analysis can reveal hidden problems, Such as blockages, race conditions

do not match the compatibility of the interface system platform of category. Many of

these languages support the complex architecture of logical analysis, focused on

development, support and gold. Table (1.1) shows a list of some recent ADLs. There is

no clear line between ADLS not ADLS. In principle, programming languages and the

development of language models and material description languages, the general

aspects to ADLS. Languages, which are born as ADLS net advantage over architecture

on the basis of representation in other languages are emerging. The purpose, then

represent ADAPTE architecture. Table (1.2) includes a list of ADLs and their purpose.

Table 1.1 A List of Some Recent ADLs, Organization, And Team Leader

Table 1.2 A List of ADLs and Their Purpose

151

2. Related Work

In recent years a number of international conferences and seminars have been

organized and numerous research papers have been published to address various

issues in the architecture of description languages. In AD Fuxman [2, 2000], several

ADLS ranked and compared, including the Rapide, Darwin, Aseop, Unicon, Wright

and ACME. Comparisons supports the basic architectural elements: components,

connectors, configurations and styles, focusing on focusing on their functionality for

formal modeling and analysis, such as formal semantic models and automatic

property verification Architectural. N. Medvidovic and RN Taylor [16, 2000],

presented the framework for the definition and classification of ADLs. The structure

used to classify, compare and identify the key properties of several existing AVQs. A

simple test document for AVQ is provided by the definition, which largely reflects the

consensus of the community on what is important in the modeling architecture:

architecture is different from other signs of its architectural configurations and

connectors. They also showed that the accompaniment scope and definition can be

used for deciding if the destination is ADL, some estimations were rejected as

potential ADLs. Components, configurations, and connectors should be clearly

modeled by the ADL. P. Mishra; N. Dutt [25, 2005], this paper studies existing ADLS

terms (a) the internal characteristics of languages and (b) supports the methodology

for simulation, synthesis, synthesis, testing and verification of Integrated system. It

concludes with a discussion of the advantages and disadvantages of the existing

relative and future ADLs of expected performance.

J. Aldrich, C. and D. Chambers Notkin [3, 2002], shows a case study showing that

ArchJava can be applied to a moderate size of Java program with relatively little effort,

resulting in program structure Which more closely corresponds to the designer of the

conceptual architecture. Thus, Java Arche facilitates effective architecture based on

the development, understanding and implementation of the evolution program. P. H.

Feiler, B. Lewis, C. Vestal [9, 2003] have demonstrated AADL over complex safety

critical systems constructed in the field of avionics. An increasing number of tools, as

well as supporting the ALDA transition become available, including current AADL

graphics. This paper is organized as follows: Section 3 describes the basic elements

for the last ADL, including: AADL, MetaH, SADL, ArchJava and ACME. Section 4

classifies and compares the ADLS according to the features supported by each ADLS.

Finally, in Section 5, Results of our survey results are tabulated.

152

3. ADLS Support Architectural Elements

Components 3.1: Provide the basic computational elements, and to store the data

system.

 All languages cannot distinguish between a component and a component, for

example an interface that displays the interface. All languages provide syntax and

semantics for the component interface specification. All languages see interface

specification component, as defining the type of component that can be multiple

instances of components that have the same interface [15]. The architecture of the

components can be as a singular procedure (for example, procedures of Metah) or it

can be as whole application (for example, macros of MetaH). This may need the owned

datafor it or / and a space for execution, or it can apply the concept of sharing with

other parts [16]. The components arevAADL type which is a component of the

description, as well as one or more implementations. Generalization of the

components supported by types of component and embodiments which can be

expressed as an extension of further types of implementation and components. AADL

is not suitable for the design and installation of interior components. Application

modeling system is supported by two groups of component categories. The execution

behavior, which consists of fibers and processes the source code system that consists

of a unit packet in the source text block and the component of data as passive

application data. The internal development and implementation of these components

can be determined by linking the original text written in the language of a software

program, such as Ada95 or C, and so, or domain-specific modeling languages such as

Matlab / Simulink [8, 9].MetaH allows specifications for multiple implementations

that present the same abstract interface and allow the selection or instantiation of

different implementations for components of the same type (same abstract interface)

within an architecture, the MetaH interface specifications are Considered as

behavioral abstractions Comprehensive behavioral specifications. MetaH allows

static declarations of multiple instances that present the same interface. For MetaH,

the interface and implementation can be specified separately. In MetaH, components

must also be categorized according to a set of language-specific classes: events, ports,

subroutines, packages, processes, macros, and modes. The user-specified components

must belong to one of these categories and each category imposes certain language-

specific restrictions (for example, authorized classes of subcomponents, component

attributes). In MetaH, the elements of an interface can themselves be components

(interfaces with subcomponents). It provides basic interface element types (ports and

events in MetaH). MetaH also allows complex interface components that themselves

have specifications (component declarations in MetaH) [15,16] . New constructs of

153

language are added by ArchJava in order to support components, ports, and

connectors. T-he component is a special type of object that communicates with other

components in a structured way. Components are instances of component classes.

The classes can contain ad component ports and connections, in addition to the

statement statements that can be contained in ordinary classes. Components can be

created dynamically using the same new syntax used to create ordinary objects. At the

time of writing, each component stores the component instance that created it as a

parent component. For components that are instantiated for example, the chassis

component, the parent component is invalid. The component will eventually be

collected in the absence of references to components or compounds are not available

from the roots of garbage collection. Components connected to other components via

explicitly declared ports. The port is the logical links between the components, which

are interconnected. Ports set to announce the three methods provided for the

application, supply and dissemination of keywords. The purpose of this project is to

determine the port as a service, implemented by a component should do the job. The

interfaces that were required make explicit dependencies, by reducing linkage

between components and separation in components understanding. Ports also

facilitate reflection on communication component models [3, 7]. ACME components

conform to the descriptions of the boxes and lines of software architectures. Typical

examples of components: a client, a server, a filter, and database objects. Component

Interface defines a set of ports. The component can provide multiple interfaces using

different types of ports. The interface port can be as simple as a single procedure or a

more complex interface, such as a set of procedure calls, or only once the interface of

multi-player events [10]. SADL is a semantic unit, in which the components of the

language specification represent one of the simulation components that are either

hardware or software simulation device. SADL interface component is a port and

interface points marked in MetaH, SADL and other languages. SADL makes explicit

use of the parameters of the signature interface for components. Typically, this is done

in such programming languages as C ++ and Ada [16, 26]. All languages are supported

ADLS interface component specifications. They be different only in the information

type they have provided and the terminology, such as ACME, AADL calls the port.

3.2 Connectors: represents the interaction between the components

AADL modeling support three types of interactions between components of control

and exchange of data between components, including: transferring messages, events,

passing and remote calls [9]. MetaH has certain linguistic categories of compounds,

as they do for components: connection events, port connections, joints and

154

equivalence connections for MetaH access. Each category has its communication

semantics and restrictions based on class attributes and components are connected.

MetaH has only a fixed set of defined compound language courses; The user can not

specify the new classes of compounds or abstraction possible for the components

(although MetaH provides a number of connection attributes for the user can set the

fine tuning of the communication) [15,16,19] . In ArchJava symmetric connect

primitive connects two or more ports together, linking each method required to

provide a method with the same name and signature. Arguments for the connection

may have its own ports one of the components or subcomponents are in finished

domains. Verification of the integrity of the connections are made to guarantee that

every method which required is associated with a single means provided. It provides

methods which can be performed by transferring calls to necessary methods or

components from other ports. Semantic support language for sending and

disseminating methods, a semantic alternative of compounds (eg instantiated, in

ArchJava asynchronous communication can be performed when a custom intelligent

connector is written. The integrity of the connection limits the methods that can be

used in component interfaces Because only the parent component can call its Methods

directly, it is important to get links to the sub-has not escaped the scope of their parent

component. Dynamically created components can be linked to each other at runtime

by using the join expression Considering integrity requires that each component is

clearly documented the types of architectural interactions are allowed between the

roll up. For describing a set of compounds the transparent connection is used,

whereas at running time it can be instantiated by the connected expressions. Port

interfaces describe the orifice, which can be instantiated repeatedly to communicate

with the help of various compounds (such as, in the Web server communicates the

router component with multiple pieces of work, each through a different connection.)

Ports Interfaces instantiated using CONNECT statements, a connection object is

returned by CONNECT operator expression, it implements all connected ports

ArchJava port interfaces support two types of methods: calls Direct method and

method calls by Java ports enforces the integrity of communication, providing the

invariant that all components -typed expression scope reaches the C component refer

to itself or to the sub-immediate C in ArchJava C-type system, only the instance of the

named component in the interface port type is allowed to make calls via the

connection object that implements this type of interface port. Type arc. Java prohibits

calls to methods that violate architectural constraints [3, 4]. ACME connectors

correspond to box-office and online lines. Simple interaction forms include: message

passing, pipes, broadcast events, and calling of remote procedure. Sophisticated

155

forms of interaction include: client-server protocol and a SQL link. The systems are

configured with components and connectors. The interfaces of connection are points

of interaction between the latter and the components which are attached to it. This

makes it possible to reason on well-educated configurations. Connectors Interfaces

define the roles. There are two roles of binary connectors, like the RPC connector that

is called and a caller, read and write the role of the conduit, or the sender and the role

of the connector receiver [10]. SADL connector is a part of the design that used for a

specific style of architecture. In the architecture, the specification of the connector is

specifying the brackets type of data connector. in the definition of SADL connector

style, arity and restrictions of uses of a connector, etc. are given. SADL bases

connector types on the communication protocol, it also provides parameterization

tools, which allow the specification of flexible signatures and restrictions on the

semantics of the socket [16, 26]. Only the connectors of ADLS assist the connection

interfaces specification, explicit port components and then the necessary connector

roles in architectural configurations.

3.3 Configuration:

Architectural configuration or topology bound graphics components of the

architectural structure and connectors which describe the structure. Such information

is necessary to decide whether the respective connected components and their

interfaces are the same, the connectors for good communication and the semantics in

combination lead to the desirable and demand behavior. Configuration descriptions

assess the two aspects of a distributed architecture, for example, reliability, possibility

of deadlock (or failure) and starvation, security, performance, etc. .also

Configurations allow you to analyze respect for designning constraints and heuristics

type [16]. Model of architecture AADL according to the hierarchy of the elements,

whose interaction is represented by the compounds [9]. Configuration descriptions in

online configuration ADLs, for example, MetaH connection parts, usually overloaded,

while the explicit configuration example Adis, ACME, has the best potential to

promote clarity architectural structure. Both textual and graphical notations are

provided by some languages. A Graphical type achieves. However, it is only in the

case that there is a clear link between the graphs and the description of the basic

model, MetaH support is "semantically its" graphic symbol, while ACME does not

[16]. ACME is built from seven types of objects to represent the architecture,

including: components, connectors, systems, ports, roles, views, and repmaps. ACME

supports a hierarchical description of the architecture. Any component or connector

may be represented by one or more detail. Each description is a representation in

156

ACME. Component or connector, which has an architectural representation of

previous display representations indicating the correspondence between the internal

systems and the external representation of the component interface or a connector

presented [10].

Developers can be assured that ArchJava architecture accurately reflects the

relationship between components, such as language semantics to ensure the integrity

of communication. The integrity of the Java connection means that the components

of the architecture can not call methods on each other between the ports of the claimed

compounds. In the architecture, every component can use its ports for communicating

with the other components that is connected to them [3]. SADL assists connector sub-

types and their updates through abstraction's styles and levels. In the configuration

section defines the SADL restrictions configuration of the components and connectors

described above. These restrictions may argue that, for example, the function or a

variable component access / write component, a component sends a signal that the

component obtains, the direction of the data flow between the two components, as

well as on that Shutter of the read operation is called [16, 26].

4. ADLS Specifications

To compare and contrast existing ADLS, The study used a range of important

characteristics that certain ADL may or may not be.These functions can be structured

into three categories: feature oriented systems features language-oriented, and

process-oriented features.

4.1 system-oriented features

System-oriented functions are functions related to the application of the system

derivative of the description of the architecture. For example, some may not express

ADLS limit in real time, while others have this function [1, 2].

4.1.1 Architectural styles

The architecture in the computer system is a configuration of constituent and

connectors that occur repeatedly. Typically, the architecture is similar to the type of

components and connectors. They have a particular way of interaction between

components. They are not a complete software / subsystem system. Architectural

styles are deliberately ambiguous by the number present in its components and

connectors. Architectural styles put restrictions on components and connectors. Most

ADLs provide a mechanism for determining architectural styles, such as pipes and

filters; Programs and subprogram’s; Multi-level; Object oriented; Data exchange

157

processes; Event system; Transactional database systems; Blackboard; Translator; On

the basis of the rules; Heterogeneous styles; And other styles [15,16,21].

4.1.2 Areas: What are ADL application areas, specifically designed for support, if

any, and how and to what extent?

Development models AADL embedded systems with complex resource (size, weight,

power) the limitations that are difficult to requirements and a strict reaction in real

time, the system should endure disadvantages of these devices and use of I / O

specialized equipment. Including avionics system, flight control, power management

engine and medical devices, control equipment for industrial processes, robots, space

technology, and can be extended to support other essential applications [8, 9]. MetaH

was designed to create avionics and flight control systems, missiles and aircraft. It was

developed to integrate several software applications in the field of avionics, generated

architectural background based on the planning and implementation of formal

methods. Save MetaH provides developers with a simple but precise language to

indicate the architectural requirements, from which it extracts the formal parameters

for the simulation of several analyzes. It includes both hardware and software

components. It will generate the architectural integration of hardware and software

components in the system with the modeled behavior of complaints [22, 23].

ArchJava for any Java application designed to run on the same Java Virtual Machine.

For applications written in different languages and covering a few cars, some of them

are written in Java and runs on the local level are still able to get ArchJava. Note also

that the methods used in ArchJava can be applied to other typed languages (eg, C #),

although our current system only supports Java [3, 4]. SADL is used for the formal

specification of the level of detail of architecture and a graphic area, ADL-specific,

making it easier to spec a high-level hardware and software aspects of driving

simulation system, Avionics real time, is designed to work in a variety of hardware

configurations, including multiprocessor systems. [26]

4.2 oriented features Language

Oriented linguistic characteristics are the characteristics of ADL. An example of

formalized syntax and formal semantics and ADL are the architectural abstraction

that embodies the ADL [1, 2]. Quality Score 4.2.1 Language as syntax and formal

semantics are determined by language? Is there a loudspeaker (or user-defined) rules

for completeness and consistency with the architectural description is made on the

language? The concept of sequence is determined between two different descriptions

158

of the architecture? Suffer if the language (to provide useful operations on incomplete

information) description?

ALDA and processed to provide accurate information and vehicles to describe the

concept and implementation of the architecture provides the basis for modeling and

analysis of systems facilitates the automation of a number of development measures,

And significantly reduces the development and implementation of loopholes.

Although the core language provides a number of concepts with accurate semantic

modeling and mapping in the framework of the platform and performance [8, 9].

ACME does not embody the semantics of a specific architecture calculation. Most

likely, ACME is based on an open semantic structure, which provides basic structural

semantics, allowing specific computers or the productivity behavior associated with

the ADLS architecture, using the properties of the structure. The structure of open

semantic supplies a direct mapping of the language structural aspects in a logical form

basing on constraints and relationships. In such context, the ACME specification is

derived predicate, called its appointment. The names of the predicate properties that

take the object to which the property is used as an argument and returns the name of

the properties of the object. Property values that are considered primitive atoms

without their own semantics [10]. Views 4.2.2: How well does ADL support a variety

of perspectives that highlight different aspects / perspectives of architecture? What

types of syntax are supported? Graphic, textual, ... etc .. What is the opinion of

semantic care? The flow of data, flow control, in terms of processes, etc. Do ADL

translate between species? In order to determine the architecture, variant

stakeholders may demand variant architecture views. Customers may agree a "box"

Description; Developers may require detailed models of components and connectors;

Managers may require the presentation of an appropriate development process.

AADL modeling language support in several forms of address and architecture

analysis and performance of applications using the modeling and execution system

explicit elements and reference platforms clearly defined semantics simultaneity and

Interaction time properties / performance. AADL can be considered as the notation

of modeling which can be supplemented by estimates of the specific objectives of a

particular analysis and report modeling. These additional characters can be entered

using value chain properties. Alternatively, other types of semantic modeling and

processing of some of the tests can be demonstrated in UML models terms of sub-

loudspeakers [8, 9]. MetaH supports two basic types of architecture: text and

graphics. MetaH further distinguishes the different types of components and

connectors iconically. This not only allows for the high level and detailed

understanding of the building blocks [16]. The appearance of ArchJava system shows

159

an overview of the system. This point becomes more precise in terms of what would

be the starting point for a sequential control unit operation that makes it possible to

get the desired product. The systems we develop, but provided by other systems.

ArchJava When a component or system is determined by interacting with external

systems to connect the external components of the system are already installed

adapter. The adapter will be responsible for covering the specific application. Inside

view of the system logic in the box style and the line can be represented. With

ArchJava possible at an early stage to describe the composition of the system only by

referring to the various components used. [10].

4.2.1 Characteristics of targeted users: Domain analyst engineer, applications,

systems, software manager? Required skills: domain expertise and experience of

software development, experience in a programming language? AADL enables the

developer to perform an analysis of compiled systems and components like security

analysis, schedulability of the system, and analysis. For these analyzes, the structural

changes and compromises can be evaluated by the designer [8, 9]. Software

developers who are responsible for embedding architecture and embedded real-time

systems and software on your target platforms. Responsible for the successful

development and maintenance of critical performance systems, large-scale programs.

Commercial producers of tools and engineering companies interested in providing

design, analysis and generation solutions for the embedded computing community.

Researchers in the universities, industry and government are looking for the

architectural research platform with a direct link to the community of practitioners.

[13] MetaH support for analysis, verification and manufacturing in real-time, fault-

tolerant, reliable, multi-processor firmware. Language does not allow functional

specifications, in addition to facilitating the entry of common names, objects and

outputs. Instead, MetaH captures behavior information and connectivity information

associated with real-time scheduling, fault tolerance, security and scalability of

multiprocessor systems. MetaH for use in combination with other specialized tools

and language library services that define the functionality of component

characteristics (eg, ControlH) [15, 22]. By providing a common format for the

exchange of architectural projects, the ACME architecture allows developers to easily

integrate their tools with other additional tools. Tools In addition, Acme-compatible

architects have a wide range of analysis and design tools available to them that

architects trapped in an ADL [10].

160

4.2.2 modifiability of the software architecture description: How well ADL

facilitates the evolution of architecture and its representation? The extent to which

the ADL can be large and / or complex systems, hierarchies? AADL communication

port between the wires of the partition is used to implement a variable and adjustable

system design, while maintaining an efficient and predictable implementation and

communication [9]. Metah source modules can be more independent of hardware and

software applications on the context in which they are used. The MetaH architecture

allows the system to be quickly reconfigured to adapt to changing equipment and

functional requirements, without changing the modules of the source code application

[18, 22]. ArchJava hierarchical software is expressed in constituent elements, which

consist of several support elements connected to each other. Subcomponent is an

instance of the component being invested in another component. Sub-Singleton,

usually declared as a component type of finite fields. The described structures in

above, represented static examples of the hierarchal architecture where the

interaction was among its components. Nevertheless, some system architectures and

require the installation of connections with a number of components dynamically.

X25BillingCenter genuine experience that uses the approach of designing a complex

system by assembling components. This experiment showed how the software

architecture approach can lead to the rapid implementation of complex software

systems using ArchJava [3, 4].

4.2.3 The expressive power ADL

Primitive powerful signs: Is the primitive powerful architecture at the level of the

language? AADL data type is used for input ports to specify the types of conventional

parameters, and to provide copies of these components. Extension component type

mechanism can simulate inheritance. In particular, the types of components of the

procedure may have processes and provide the data component as claimed in the

proportion of said protocol class competition command. The necessary access to the

copies of the existing data components provided in the desired cell type signatures

[9]. Direct relaxation eliminats ACME and styles, this allows tools of ACME to

translate any ACME description into a language kernel that is more primitive for

direct exchange. This illustrates the simplicity of the language. As a result, ACME

satisfies its secondary objectives of readability and abstraction, are not incompatible

with the main purpose of exchanging descriptions of the software architecture

between heterogeneous AVQs [10].

Scalability: Scalable if, in the sense of adding new applications in the language?

161

AADL was expandable in three respects. First, developers can define an extensible set

of components in the form of standard component specifications and their

implementation through the use of the extension mechanism. Second, the language

can be extended with the ability to introduce new functions and widen the range of

acceptable property values for existing properties. Third, AADL draft standard

includes specification as a UML profile. AADL proposes the concept of organization

to describe the type of component and the implementation of the library. New

properties are supportd by language via extending the allowed values set, and they

are connected with the existing ports, connections, and components categories by

created extension sets. Restrictions can be entered via properties with row values,

which means that tools for analyzing internalized constraints [9]. ACME provides a

framework and a reliable and scalable infrastructure that allows builders a tool to

avoid without the need to restore a standard set of infrastructure tools. In addition,

the origin of Acme as a universal exchange language allows the tools developed using

Acme as a native architectural presentation, to be compatible with a wide range of

architecture description languages and existing tools with little or no further

development effort. [10]

Readability: The extent to which ADL supports incorporate comments? The extent to

which the architect's control over the presentation (eg, layout), information

architecture? Adding ACME templates and styles greatly enhances readability and

abstract linguistic features [10].

Variability: How well ADL are variations in application systems, which can be

obtained from the architecture?

AADL components may have multiple implementations that are defined for a

component type. This variability can reflect in the implementation of the various

components of the sub-contents, the different modes of interaction of the

components, a variety of dynamic configuration and the execution of the modal

characteristics by AADL modes, as well as the realization of the property values

Specific. We will examine each of them for their role in the modeling of family

components and systems [13].

4.3 process-oriented characteristics

Process-oriented characteristics are the characteristics of the process associated with

the use of ADL to build, test, analyze and refine the architecture and build a system of

its application [1, 2].

162

4.3.1 Architecture Support

Creation of an architecture: editor of Justification, edition, Import tool? AADL

developed by the Society of Automotive Engineers (SAE) under the auspices of the

Committee of Experts, Architecture and Analysis of Design Language (AADL) was

approved and published in November 2004. The ALDA is the language of text and

graphics which is used to describe the hardware and software components of avionics

systems (sometimes called Avionics Architecture Description Language) and the

interfaces between these components [12]. Language MetaH has both textual and

graphical syntax and tools for specification for viewing and editing as interchangeable

in all formats. It specification Metah graphic can be automatically translated into

MetaH text version or vice versa. Architecture Features of MetaH can be developed

using either graphical or textual syntax, where tools can convert one form to another.

In addition to editing tools, there are tools for performing various checks and tests

and tools for automatically generating load images [22, 23]. SADL is a graphical

language, that uses a graph of oriented type which is as nodes connected by arcs for

representing the architecture of simulation, whereas nodes act the component of

simulation while arc acts the interactions between them. A custom drawing is

introduced for the design, it was maked with the help of the field simulation

environment (DOME), which was improved in the technology center of Honeywell

company to aid tools of improving and prototyping and graphic specifications. DOME

assists the alter methods implementation, which are used for applying rules of the

design, and creating artifacts like code and documentation. Means for describing the

nonfunctional attributes are also provided by the SADL, that are associated with

components of simulation, like time and frequency of execution, which can be used

for planning purposes [26]. Acme project began in early 1995 to provide a common

language that could be used to support the sharing of architectural descriptions

between varieties of architectural design tools [12]. Specification: Support for browser

search tool, refinement step tool, version control, architecture comparison? Some

languages allow the generation of the system directly from the architectural

specifications; This is usually one of the implementation languages of limitation.

AADL supports the evolution of components in order of succession, allowing more

specific components to be cleaned from the more abstract component. AADL listed

design specifications or identified risks. Larger models can be generated automatically

from the design database systems and organized into separate packets for the

development of a version control command, and [8, 9]. MetaH allows you to specify

source files, which are compatible with elements of architectural. Several problems

exist with this approach, where as the assumption of a relationship between the

163

architectural attends and elements as a result of an I-to maybe unfounded, with no

guarantee that the desired behavior will be correctly implemented by the particular

source modules, or any changes in these modules in future will return to the

architecture, and inversely. [16]

In the first step in determining the ArchJava architecture, all methods of each port

are displayed in a single component, as all ports provide only the services provided.

All the methods of each orifice is one of the components. Thus, the mapping is direct

and does not require multiplexing functional characteristics. Thus, each component

that is attached to the external port has a similar port. In the next step, each

component must be found if the component that is causing the same problem [3, 4].

SADL is very strict in its refinement as much as architecture. SADL differs from other

ADLs because it supports the distribution structure on several levels. This is called a

refinement of the terminology of the system structure of a high level SADL. However,

SADL can provide structural support to extend along a limited number of

measurements (eg, components, connectors, configuration). SADL support for

behavioral modeling is very limited [16, 26].

4.3.2 Architecture Analysis: What support is available for analyzing ADL-level

information architecture to predict or project the quality of the final system?

Maintainability: capacity for correction, scalability, management? Since the model

design and architecture and implementation specifications of the AADL reader, they

can be stored to accommodate changes based on model-driven architecture

throughout the system lifecycle. AADL also clearly identifies objects, messaging, and

decomposition properties [8, 9]. MetaH was designed to ensure the rapid

development and evolution of the system. One aspect of evolution is the ability to

rapidly reconfigure these complex systems in real time on the new mode of hardware

environment. MetaH process development system offers a low risk of rapid changes

to execution. This radically changes the high risk associated with the concept of

hardware development at present we use. Now, with MetaH, from the point of view of

the execution environments of the material / program software can develop

repeatedly during a system area and more power development using modern

processors [18].

Portability: Hardware independence, software independence? AADL is very compact

because the functional and non-functional requirements are isolated from the

hardware. Equipments and Fasteners Simulation are fully supported and AADL of the

device described in SW API [8, 9].

164

Reliability: tolerance errors, degradation of performance, availability? AADL use

error model support as a standardized extension to support AADL simulation /

reliability and fault risk analysis [9]. Metah determine the nature of the error, which

describes the types of defects that can occur (eg, continuous transition), and then an

error condition that the objects can be (for example, incorrigible errors did not) , And

the collection of state machines, describe the state of the error object can change that

events and error error propagations. Reliability modeling and analysis allows the

system architect to determine the probability of failure of a fault-tolerant system that

is prone to random error of future events. The set of errors, defects, and various

objects reaction in the event of an error are defined by the architecture of the system.

Two types of data models, simulation of user input errors can be derived by the

reliability analysis, they are:

1. The model of Stochastic parallel process. It is well-defined applications among the

model objects, specification and implementation of a code modules set and Metah

entities.

2. The model of Markov chain. It can be represented by solving tools of the reliability

model of Markov chain (such as, the file can be introduced directly into toolbars,

PAVE, NASA, and SURE).

Ergonomics: comprehensibility, ease of learning, ease? Graphical support and AADL

hierarchical views. The attributes of the approach and formalism of practical, easy

uses, and regular, lead to learn and interact with extra approaches [9]. Language

specification MetaH architecture includes as part of its review of the definition of

principles used for the first coding module. These principles, along with the MetaH

features language defines a set of programming tools / hardware / software and

software common interface. Thus, source units may be more independent of the

software context and application hardware in which they are used. MetaH supports

increasing the reuse of source modules [22].

4.3.3 Use of the building

The system includes: composing integration or replacing authorities to create an

executable software and a compiled system: a homogeneous distribution of

distributed system processing systems of heterogeneous components of the system,

written in more than one language? AADL composition of model systems and

productivity software components of the hierarchical platform. The system may

include a data line, a group of threads, processes, memory, processor, buses,

peripherals, and subcomponents of the system. This system can request and grant

access to the bus and components [8, 9] Data. MetaH allows the implementation of

165

bean must be defined by a set of subcomponents and the links between these

subcomponents, which we will call subarchitecture. It is based on a static, as opposed

to dynamic reference subcomponents for instances, interfaces, and connections. In

MetaH this decision stemmed from two goals of maximizing the compilability of time

and testability computability and minimizing overhead performance in real-time

systems. MetaH provides distinct language, built to declare components and

connections, as well as declaration compounds appear only under the (sub-

architecture) specifications [15].

Query Generation Support: Is the ADL code generation component there, generation

of event test code for packaging production, documentation generation? The system

is modeled in AADL includes the application software displayed on the platform at

runtime. Data, routines, and stream group processes together constitute the

application software. They are called software components. Processor, memory, bus

and peripheral devices, as well as the performance of the platform. They are called the

platform components at runtime. Software components of the original model, text,

virtual address spaces and concurrent threads. The programmer writes the source

code either using a programming language (like C or Java, Ada 95), or using modeling

languages of domain-specific like ESTEREL, SDL, Glossy, UML, and Simulink, where

as the executable code is generated for it. [9] MetaH provides a simple approach of

wrapping for code interaction variety sources, which involves the inheritance code

from the application code generator, and a new code developed manually. Other tools

can be used by the application engineers which they are a specialized for application

part, and they can wrapped by the system engineers to use with MetaH and they are

quickly integrated on built-in hardware code generation. The code that is used to

create an executable image of Metah specifications can be divided into two steps by

two tools. The compiler of MetaH converts a source code, compiles, and links

directives, whereas a tool for Assembly (MakeH) uses the information that are

prepared in compiler of MetaH to do compiling, linking, and probably uploads images

to the hardware system, one for every CPU [22].

4.3.4 Tool for maturity, availability and support:

AADL supports the decision to open a source. SEI Open Source AADL Environment

Tool (OSATE) and a commercial support tool [8]. MetaH designed to mimic

applications aspects planning, reliability and security multiprocessors in real time.

Currently, a set of tools includes a real-time graphical analyzer, and the Millennium

Development Goals operation to add security analyzers and security analyzers. The

analysis is carried out using numerical tools (math) rather than modeling the analysis,

166

whether the results are complete or sound, in the sense that they all involve the

performance of possible behaviors [15]. ArchJava AcmeStudio and can work together

to help architects and engineers to model, analyze and implement the consistent

architecture throughout the software lifecycle. AcmeStudio this IDE architecture, it is

written as a plug-in for IBM Framework IDE Eclipse, which supports ADL Acme [5].

5. Summary

The following tables summarize our survey.

Table 5.1: System-oriented features

Table 5.2 Language-oriented features

167

Table 5.3 Process-oriented features

168

References

1. Paul C. Clements: “A survey of architecture description languages”. In Proceedings

of International Workshop on Software Specification and Design (IWSSD), pages

16-25, 1996.

2. Ariel D. Fuxman: “A survey of architecture description languages”. Technical

Report CSRG-407, Department of Computer Science, University of Toronto,

2000.

3. J. Aldrich, C. Chambers, and D. Notkin: “ArchJava: Connecting Software

Architecture to Implementation”. Proc. International Conference on Software

Engineering, Orlando, Florida, May 2002.

4. D. Bennouar, T. Khammaci, and A. Henni: “The Design of Complex Software with

ArchJava”. Journal of computer science volume 2-11, pages: 807-814, ISSN 1549-

3636, 2006.

5. B. Schmerl, and D. Garlan: “AcmeStudio: Supporting Style-Centered Architecture

Development”. Proc. International Conference on Software Engineering,

Edinburgh, Scotland, May 2004.

6. Jonathan Aldrich, David Garlan ,Bradley Schmerl and Tony Tseng: “Modeling and

implementing software architecture with acme and archJava”, ACM Press , Pages:

156 - 157 , ISBN:1-58113-833-4, 2004.

169

7. J. Aldrich, C. Chambers, and D. Notkin: “Architectural Reasoning in ArchJava”.

Appear in European Conference on Object Oriented Programming, Malaga, Spain,

June 10-14, 2002.

8. P. H. Feiler, B. A. Lewis, S. Vestal, Member, IEEE: “The SAE Architecture Analysis

& Design Language (AADL) A Standard for Engineering Performance Critical

Systems”. Proceedings of the 2006 IEEE Conference on Computer Aided Control

Systems Design Munich, Germany, October 4-6, 2006.

9. P. H. Feiler, B. A. Lewis, S. Vestal: “The SAE Avionics Architecture Description

Language (AADL) standard: A Basis for Model-Based Architecture-Driven

Embedded Systems Engineering”. In RTAS 2003 Workshop on Model-Driven

Embedded Systems, May 2003.

10. David Garlan, Robert Monroe, David Wile: “Acme: An Architecture Description

Interchange Language”. InProceedings of the 1997 conference of the centre for

advanced studies on collaborative research, page 7, 1997.

11. D. Garlan, R. T. Monroe, and D. Wile: “Acme: Architectural Description of

Component-Baed Systems”. Foundations of Component-Based Systems, G.T.

Leavens and M. Sitaraman, eds., Cambridge Univ. pages: 47-68, 2000.

12. http://www.sei.cmu.edu/str/descriptions/adl_body.html.

13. http://en.wikipedia.org/wiki/Architecture_description_language

14. http://www.arch.java .org

15. S. Vestal: A Cursory Overview and Comparison of Four Architecture Description

Languages. Technical Report, Honeywell Technology Center, February 1993.

16. N. Medvidovic and R. N. Talor: A Classification and Comparison Framework for

Software Architecture Description Languages. IEEE Transaction on

SoftwareEngineering, 26(1):70{93, January 2000.

17. http://www.htc.honeywell.com/projects/dssa/dssa_tools/dssa_tools_mh.html

18. J. H. McDuffie: Using the architecture description language MetaH for designing

and prototyping an embedded spacecraft attitude control system, Digital Avionics

Systems, 2001. DASC. The 20th Conference, Vol.2, Iss., Oct 2001, Pages:8E3/1-

8E3/9 vol.2

19. J.W. Krueger, S. Vestal, B. Lewis: Fitting the pieces together: system/software

analysis and code integration using METAH, Digital Avionics Systems

Conference, 1998. Proceedings, 17th DASC. The AIAA/IEEE/SAE, Volume 1, 31

Oct.-7 Nov. 1998 Page(s):C33/1 - C33/8 vol.1

20. B. Lewis: Software portability gains realized with METAH and Ada95. In

Proceedings of the 11th international workshopon Real-time Ada workshop, pages

37-46. ACM Press, 2002.

http://www.sei.cmu.edu/str/descriptions/adl_body.html
http://en.wikipedia.org/wiki/Architecture_description_language
http://www.htc.honeywell.com/projects/dssa/dssa_tools/dssa_tools_mh.html

170

21. N. Medvidovic and D.S. Rosenblum: Domains of Concern in Software

Architectures and Architecture Description Languages, Proc. USENIX Conf.

Domain-Specific Languages, pp.199- 212, Oct.1997.

22. http://www.htc.honeywell.com/projects/dssa/dssa_tools/dssa_tools_mh.html

23. http://www.htc.honeywell.com/projects/dssa/dssa_tools.html

24. P. Kogut and P.C. Clements: Feature Analysis of Architecture Description

Languages, Proc. Software Technology Conf. (STC '95), Apr. 1995.

25. P. Mishra; N. Dutt: “Architecture description languages for programmable

embedded Systems”, Computers and Digital Techniques, IEE Proceedings-

Volume 152, issue 3, 6, Pages: 285 - 297, May 2005.

26. KG Ricks, MSF Center, JM Weir, BE Wells: “SADL: Simulation Architecture

Description Language”, International Journal of Computers and Their

Applications, 2002 - kricks.eng.ua.edu.

http://www.htc.honeywell.com/projects/dssa/dssa_tools/dssa_tools_mh.html
http://www.htc.honeywell.com/projects/dssa/dssa_tools.html

