

SELECTION AND USE OF AQUEOUS SOLUTION OF SODIUM SILICATE FOR NEUTRALIZATION OF OIL

Saidmirzayeva Dilnoza Bakdurdievna
Assistant, Jizzakh Polytechnic Institute

Аннотация

В данной статье представлены результаты исследования процесса очистки в процессе очистки махсарских нефлей в присутствии водного раствора силиката натрия. Установлено, что в этом случае увеличивается выход нейтрализованного масла по сравнению с едким натром. Достигнутые значения качественных показателей нейтрализованного махсарского масла достаточно высоки.

Ключевые слова: сорго, семена, масла, очистка, водный раствор, силикат натрия, соапсток.

Annotation:

V dannoy state predstavleny resultaty issledovaniya protsesa achistki v protsese achistki makssarskikh neftey v prisutstvii vodnogo rastvora silicate natriya. Ustanovлено, chtо v etom sluchae uvelichivaetsya vykhod neutralizovannogo masla po sravneniyu s edkim natrom. Dostignutye znacheniya kachestvennyx pokazateley neutralizovannogo maxsarskogo masla dostatochno vysoki.

Keywords: sorghum, semen, masla, chistka, water solution, sodium silicate, soap stock.

Introduction

In the oil production industry of the Republic of Uzbekistan, cottonseed oil obtained by pressing and extraction method is traditionally refined using an aqueous solution of NaOH.

In this case, the concentration of alkali is 200-250 g/l with an excess of 150%. The higher the active alkali (NaOH), the lower the productivity of the product and the higher the loss of neutral oils in the soapstock.

To decolorize dark cottonseed oil, it is necessary to use NaOH, because the extraction of gossypol from cottonseed oil requires the use of an alkali with a high concentration and activity of forming sodium gossypol.

Makhsar oil obtained by pressing and extraction methods has a light color, so it is possible to use alkalis with lower activity, for example, sodium silicate, in their neutralization. In this case, it is necessary to maintain the concentration of sodium silicate aqueous solution at 100-150 g/l with a 50% excess. Therefore, replacement of traditional NaOH alkali with sodium silicate allows to produce more neutralized maksar oil due to saponification of free fatty acids.

Unfortunately, in current practice, because there is no scientific method for neutralizing castor oil with sodium silicate, highly concentrated and excessively alkaline NaOH is still used. Taking this into account, we conducted several experiments on the neutralization of safflower oil using sodium silicate.

The experiments were carried out in laboratory conditions, and the raw material was analyzed based on the manual of neutralized safflower oil (methodology).

Oil neutralization was carried out at a temperature of 60°C, with a mixer rotating at 150 rpm.

Table 1.1 shows the results of extraction and pressing method of neutralization of safflower oil.

Table 1.1 The difference in the final indicators obtained during the neutralization of Makhsar oil with NaOH aqueous solution and sodium silicate

Naming of indicators	Extracted oil	Neutralized oil	
		Aqueous solution of sodium silicate	Aqueous solution of caustic soda (control)
Acid number, mg KOH/g			
Mass fraction of phospholipids, %	1,65	0,15	0,28
Color, mg J2	0,34	0,03	0,09
Perekis number, 1/2 ommol/kg	60	20	30
Output, %	12,05 -	3,55 98,22	4,65 95,73

As can be seen from Table 1.1, in the replacement of NaOH with sodium silicate for oil production enterprises, the acid number of maxar oil (from 1.65 mg KOH/mg to 0.15 mg KOH/g, the mass fraction of phospholipids from 0.34%) 0.03%, its color can be reduced from 60 mg J2, the number of peroxides from 12.05 1/2 o mol/kg to 3.55 1/2 o mol/kg). The achieved quality index of neutralized Makhsar oil is significantly higher.

At the same time, the aqueous solution of sodium silicate increases from 95.73% to 98.22%, i.e. by 2.49%, compared to conventional caustic soda. This is due to the improvement of the selectivity of the process of neutralization of safflower oil when using an aqueous solution of sodium silicate.

Sodium silicate forms a siliceous gel in an aqueous solution with respect to caustic soda, passing the fatty acid with sodium water and triglyceride substances to the soapstock, destroying its traditional composition and rheological properties.

Taking these into account, the known (control) and proposed method (Table 1.2) soap stock composition was analyzed.

Table -2 Comparative indicators of Makhsar soapstocks obtained using sodium silicate and conventional caustic soda (control).

Naming soapstock indicators	Ways to get Maxsar soapstock	
	The proposed method	Conventional method (control)
Total fat content, % as well as:		
- neutral oil (NYO)	49,56	56,84
- fatty acids (NO)	22,86	28,48
NYO:NONE ratio	26,70	28,36
	0,86	1,01

As can be seen in Table 1.2, the total fat content of soapstock obtained using sodium silicate is less than the total fat content of soapstock color obtained using caustic soda. The advantage of using sodium silicate is that the amount of neutral oil in the soapstock obtained with it is less (22.86%) compared to the neutral oil in the soapstock obtained using caustic soda (28.48%). the same change was observed according to the proposed method (26.7%), according to the traditional method (28.36%).

Analysis of soapstock obtained by the method using sodium silicate can be interpreted as follows: sodium silicate composition $n \cdot Na_2O \cdot m \cdot SiO_2$ combines with free fatty acids through the following chemical reaction:

In addition, as a bad product, free silicic acids are released, polysilicic groups ($SiOH$), due to their reactivity, they polycondensate with each other and form polysilicic acid in the form of colloidal solutions with various structures (gels). The use of sodium silicate as a neutralizing agent reduces the emulsification of $NaOH$ and results in stable emulsions. Using sodium silicate, it is possible to explain the effectiveness of coloration of safflower oil (table 1.2) by the adsorption of colors that can be dyed with silicate gel of semisilicic acids. The formation of larger particles of soapstock using sodium silicate allows to speed up the process of separation of soapstock from neutralized linseed oil.

Thus, as a result of the conducted research, it is possible to come to the following conclusion:

- The use of sodium silicate instead of traditional caustic soda in the process of neutralization of Makhsar oil increases the selectivity;
- The saponification of triglycerides is reduced and their results are increased, the physico-chemical parameters of the obtained neutralized Makhsar oil are significantly increased, which fully meets the requirements of the relevant standards;
- As a result of the significant expansion of the particles, the process of separation of the soap stock from the neutralized Makhsar oil is enhanced;
- By reducing the emulsifying ability of phospholipids, the amount of neutral oil in the Makhsar soapstock is significantly reduced;
- The ratio of the amount of neutral fat to fatty acids in Makhsar oil is reduced.

References

1. O`zbekiston Respublikasi Prezidentining №4947 farmoni «O`zbekiston Respublikasini yanada rivojlantirish bo'yicha harakatlar strategiyasi to'g'risida» 2017 yil 7 -fevral // Xalq so'zi- № 8 2017 yil fevral.
2. Шмидт А.А. Теоретические основы рафинации растительных масел. -М.: Пищепромиздат, 1960,- 337с.
3. Основные направления развития масложировой промышленности. Производство растительных масел. -Л.: ВНИИЖ, 1985. -15-21 с.
4. Мгебришвили Т.В., Мартовщук В.И. Межфазная активность сопутствующих веществ хлопковых масел различной рафинируемости // Масложировая промышленность. – Москва, 1985. – №7. – С. 21–23.
5. O`zDSt 2797:2013. Соапсток. Технические условия. 2013. - 31 с.
- a. Yu.Ergashev, A.Sh.Khusanova, M.Babayeva. Analysis of dynamic characteristics of selective technology of sawing // FarPI Scientific-Technical Journal-Fergana 2020 №1 B.252-2555
6. A.Sh.Khusanova. Optimization of geometric dimensions of ginning elements of selective technologies // FarPI "Journal of Scientific Technology" Issue
7. "Optimization of geometric dimensions of ginning elements of selective technologies" Fergana-2020 P.158-160
8. A.Salimov, Sh.A.Khusanova. Analysis of experience in the introduction of modern information and communication technologies in ginneries. Republican scientific-technical conference International scientific-educational electronic journal. №A3-21.10.2020.

9. A.Salimov, O.Salimov, Sh.Khusanova, I.Khakimov "The problems of natural fiber and textile materials on fire resistance" Saarj journal Akademicia: an international multidisciplinary research journal april-2020. <https://saarj.com/wp-content/uploads/special-issue/2020/ACADEMICIA-JULY-2020-SPECIAL-ISSUE.pdf>
10. O.Sh.Sarimsaqov, N.M Sattoriv, Z.A.Siddiqov, Sh.A.Xusanova. Improvement of the Process in Disassembling of Cotton Stack and Transferring the Cotton into Pneumotransport// International Journal of Advanced Science and Technology Vol. 29, No. 7, (2020), pp. 10849-10857
11. Yu.Ergashev, A.Sh.Khusanova, O.Sh.Sarimsaqov, X.Turdiyev, J.Oripov. Selective technologies of sawing Fergana Polytechnic Institute "Selective technologies of sawing madness" "Classic" publishing house-2020 ISBN: 978-9943-6662-7-6.
12. A.Sh. Khusanova, O.Sh.Sarimsaqov, Yu.Ergashev. "Multi-position saw fiber separator" Journal of Innovation in Scientific and Educational Research_V 04/30/2021.
13. A.Salimov, Sh.A.Khusanova, O.Salimov, I.Khakimov. "STUDY OF CONSTRUCTIVE AND TECHNOLOGICAL PARAMETERS OF" INTERNATIONAL SCIENTIFIC AND PRACTICE CONFERENCE ON " INTERNATIONAL EXPERIENCE IN INCREASING THE EFFECTIVENESS OF DISTANCE EDUCATION: PROBLEMS AND SOLUTIONS. journal mai-2020. www.iejrd.com.
14. A.Sh. Khusanova,Q.Toshmirzayev. "Selective technologies in sawing" Collection of conference materials
15. 23-24 April 2021.
16. M.X.Axmedov, T.O.Tuychiev, A.A.Ismoilov, Sh.A.Khusanova. "The supply part of the engineering equipment algorithm for evaluation of movement of cotton raw materials out of tarnovi" Scientific-technical journal Volume 4 Issue 3 Article 11 <https://uzjournals.edu.uz/ferpi/2021/V.4,%20N%233%20pp69-74>
17. N.Sattorov, Sh.A.Khusanova. "Selective technologies in sawing" Intellectual Property Agency of the Republic of Uzbekistan № DGU08698 06.07.2020.
18. O.Sh.Sarimsaqov, Sh.A.Khusanova, Yu.Ergashev, A.U.Sarimsaqov. "Cotton fiber separator" Intellectual Property Agency of the Republic of Uzbekistan FAP 2021 0058.
19. A.Salimov, O.Salimov, Sh.Khusanova, I.Khakimov "The problems of natural fiber and textile materials on fire resistance " Saarj journal Akademicia: an international multidisciplinary research journall april-2020. <https://saarj.com/wp-content/uploads/special-issue/2020/ACADEMICIA-JULY-2020-SPECIAL-ISSUE.pdf>