
 
                                                              

              ISSN: 2776-0979, Volume 3, Issue 9, Sep., 2022 

147 
 
  

CENTRAL EXTENSIONS OF THE SMALL-DIMENSIONAL SOLVABLE 

LIE ALGEBRA 

Kurbonov Sardor Shonazar O’g’li 

Master's Student of Samarkand State University 

E-mail address: http//:qurbonovsardor5440@mail.ru 

 

Abstract 

In this thesis, it is necessary to consider the filtered cohomology structure relative to 

the ideals of the lower central series: a cocycle defining the central extension is needed 

has maximum filtration. Such a geometric method allows us to classify nilpotent Lie 

algebras small dimensions, as well as for classifying Lie algebras of narrow natural 

rank. Concept a rigid central extension is introduced. Examples of rigid and non-rigid 

central extensions built.  
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INTRODUCTION 

An arbitrary nilpotent Lie algebra is a central extension of a nilpotent Lie algebra of 

lower dimension. Question: Is it possible to organize a recurrent procedure using such 

a construction and classify finite-dimensional nilpotent Lie algebras?  

The very first analysis of the posed question shows its transcendental complexity, the 

answer to it is hardly accesible in a general setting and for an arbitrary dimension, but 

in small dimensions or for some special classes of nilpotent Lie algebras, answers can 

still be obtained.  

We start the study with small dimensions. According to Morozov’s well-known 

classification, in dimensions ≤ 6 there exists a finite number of pairwise non-

isomorphic nilpotet Lie algebras over a field of characteristic zero. Staπrting with the 

dimension 7 (where a one-parameter family of pairwise non-isomorphic nilpotent Lie 

algebras appears), the difficulties of classifying nilpotent Lie algebras are rapidly 

increasing, which leads, in particular, to the need to consider the so-called affine Ln 

variety of Lie algebra structures on a fixed n-dimensional vector space V over the field 

K. The manifold Ln consists of skew-symmetric bilinear mappings µ : V ∧ V → V 

satisfying the Jacobi identity. The affine variety Nn of nilpotent Lie algebras is also 

defined. There is a natural GLn-action on Ln (respectively on Nn:  

(1.1)                         (g · µ)(x, y) = g (µ(g −1x, g−1 y))  , g ∈ GLn,  x, y ∈ V. 
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Obviously, the isomorphism class of a given algebra (structure) of Lie µ ∈ Ln 

corresponds to the orbit O(µ) of this action. 

 

CENTRAL EXTENSIONS OF LIE ALGEBRAS 

Central extension of Lie algebra g is called the exact sequence  

(1.2)                                          0 →V  
𝐢
→ g˜ 

𝛑
→ g  → 0  

Lie algebras and their homomorphisms, in which the image of the homomorphism        

i : V → g˜ is contained in the center Z(g˜) of the Lie algebra g˜, and the linear 

subspace V is considered as an abelian Lie algebra.  

Example 1. The Lie algebras m1(2m−1) and m0(2m−1) are one-dimensional 

central extensions of the Lie algebra m0(2m − 2) for m ≥ 3. As a vector space, the 

central extension g˜ is a direct sum V ⊕ g with standard inclusion i and projection π. 

The Lie bracket in the vector space V ⊕ g can be defined by the formula  

(2.1)                 [(v, g),(w, h)]g˜ = (c(g, h), [g, h]g),       g, h ∈ g, 

where c is a skew-symmetric bilinear function on g, which takes its values in the            

space = V , and [·, ·]g defines the Lie bracket of a Lie algebra g. One can verify directly 

that the Jacobi identity for the bracket [·, ·]g˜ is equivalent to the condition that the 

bilinear function is a cocycle, i.e. the following equality holds identically  

c([g, h]g, e) + c([h, e]g, g) + c([e, g]g, h) = 0, ∀g, h, e ∈ g,  

we assume that the initial bracket [g, h]g satisfies the Jacobi identity.  

     Two extensions are called equivalent if there is an isomorphism of Lie algebras             

f : g˜2 → g˜1, such that the following diagram is commutative  

(2.2)  

 

    A cocycle c is called cohomologous to zero c ∼ 0 if such a linear mapping exists                

µ : g → V such that   c(x, y) = µ([x, y]g). In this situation, the cocycle c is called a 

coboundary and is denoted by     c = dµ.  

    Two cocycles are called cohomologous c ∼ c ′ if their difference is cohomologous to 

zero c−c ′ ∼ 0. Cohomologous cocycles define equivalent central extensions. To prove 

this, it suffices to verify that the linear mapping  

(2.3)                     f = Id + µ : V ⊕ g → V ⊕ g,    f(v, g) = (v+µ(g), g), 

is an isomorphism of Lie algebras in the diagram (2.2). The converse is also true.  
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Note also that the cocycle c ′ ∼ 0 cohomologous to zero defines an extension ˜g ′ 

isomorphic to the direct sum of V ⊕ g Lie algebras. Such a central extension is called 

trivial.  

Remark 1. It may well happen that the Lie algebras g˜2 and ˜g1, corresponding to 

nonequivalent central extensions, are nevertheless isomorphic.The fact is that an 

isomorphism f from a commutative diagram (2.2) has to map i2(V ) ⊂ g˜2 to i1(V ) ⊂ 

g˜1 and induce identity mapping of quotient algebras Id : g˜2/i2(V ) → ˜g1/i1(V ). 

The absence of an isomorphism of f with such additional properties does not mean 

the absence of isomorphism in general. In the general case, an isomorphism is not 

required to translate i2(V ) into i1(V ) However, in the case of a nilpotent Lie algebra 

g, the answer to the question of the isomorphism of its two different central extensions 

g˜2 and g˜1 is quite possible and constructive with some c1 and c2,that we will show it 

the section .  

 

Rigid central extensions of nilpotent Lie algebras 

Definition. Set of cohomology classes ˜c = (˜c1, c˜2, . . . , c˜m) from the space                

(H2 (g, K))m of nilpotent Lie algebra g is called geometrically rigid if such a 

neighborhood exists U(˜c) ⊂ (H2 (g, K))m (in the standard topology of a finite-

dimensional space) that for any other set of cocycles ˜c′ from this neighborhood the 

corresponding Lie algebra gc˜ ′ constructed as a central extension g over the set ˜c′ 

over the set ˜c′ will be isomorphic to a Lie algebra gc˜. We will immediately clarify 

that in algebraic literature more often, when it comes to the orbits of an algebraic 

group, the Zarissky topology is considered and usually the openness of the orbit is 

understood precisely in the sense of this topology. We will now use an equivalent 

geometric approach and, accordingly, consider the standard Euclidean topology of a 

finite-dimensional space to visually describe the orbit spaces of the actions we need 

for the algebraic subgroups of GL2 on some cohomology spaces H2 (g, R) m of small 

dimensions – a similar geometric approach was considered in. It is the real 

classification that is our main goal, in the light of its various geometric applications. 

The study of the orbit space of the action of an algebraic group on an affine variety is 

the subject of the classical theory of invariants, but the goal of this article is more 

modest: we want to depict orbits that are interesting to us using images and means of 

elementary low-dimensional geometry. Since the natural action of the group Aut(g) 

on the two-dimensional cohomology space H2 (g, K) is algebraic, the following 

statement is true.       Proposition.  Let the orbit space of the action GLm × Aut(g) 

on the space (H2 (g, K)m be a finite set. Then there is at least one rigid set of cocycles 

c˜ = (˜c1, c˜2, . . . , c˜m).   
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We begin the study of examples from the simplest case. Every non-abelian three-

dimensional nilpotent Lie algebra is metabelian and can be obtained as a one-

dimensional central extension of a two-dimensional abelian algebra m0(1) = (e1, e2). 

Its cocycle e1 ∧ e2 spans the intire space H∗ (m(1)).Automorphism group Aut(m(1)) 

= GL2 acts on the line H2 (m(1)) = (e1∧ e2 ) as multiplication by the determinantdet                  

A, A ∈ GL2 pf the matrix A of the corresponding automorphism. The orbits of such 

an action will be only two: 1) single-point, consisting of the zero cohomology class; 2) 

an open orbit consisting of a complement to zero on the number line. Thus the cocycle       

e1 ∧ e2 for the Lie algebra m0(1) is geometrically rigid and corresponding central 

extension m0(2) commonly called the three-dimensional Heisenberg Lie algebra 

h3.The latter is isomorphic to the Lie algebra of strictly upper triangular matrices of 

order three and can be defined using the basis e1, e2, e3 and one non-trivial 

commutation relation [e1, e2] = e3 (the remaining commutation relations have the 

form [ei , ej ] = 0). As a methodical corollary, we have obtained the well-known 

classification of three-dimensional nilpotent Lie algebras, up to isomorphism, there 

are only two: 1) an abelian Lie algebra and 2) a three-dimensional Heisenberg Lie 

algebra h3. We can now continue the process of central extensions and consider the 

extension of the Heisenberg algebrah3 
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