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Abstract 

It has been theoretically studied that a sharp increase in the electron temperature 

strongly affects the current-voltage characteristic of a tunnel diode, at high 

temperatures causing a decrease in the area with negative differential resistance in 

the current-voltage characteristic and is the cause of an increase in diffusion 

capacitance. In addition, it has been observed that an increase in diffusion 

capacitance leads to a decrease in the quality factor of a tunnel diode. 
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capacitance. 

 

The study of the current-voltage characteristics of tunnel diodes, high tunnel current, 

the ability of a tunnel diode to work even at very high temperatures, the dependence 

of a tunnel diode on the internal structure, that is, its preparation with various 

chemical elements by the heterostructure method, is a very important factor. Based 

on the analysis of the work presented above and the available literature [1], we 

analyzed according to the theory of Nott and De Mass and in the Tsu-Esaki model and 

found that in the case of a germanium diode (Ge-diode), when the tunnel junctions 

are direct, the current increases with time at different temperatures, depending on 

the diffusive capacitance and differential resistance. According to the Tsu-Esaki 

theory, the direct current flowing through a tunnel diode, is determined on the basis 

of the product of the distribution function - 𝑁(𝐸𝑋)    on the transfer coefficient –𝑇𝐶(𝐸𝑋) 

[2] 

 

𝐼𝑇 =
4𝜋𝑚𝑒𝑓𝑓𝑞

ℎ3
∫ 𝑇𝐶(𝐸𝑋)
𝑚𝑎𝑥

𝑚𝑖𝑛

∙ 𝑁(𝐸𝑋)𝑑𝐸𝑋    (1) 
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In a tunnel flow, the currents passing from region p to region n and from region n to 

region p are determined by the following expressions: 

 

𝐼𝑝→𝑛 = 𝐴∫ 𝑓𝑝

𝜀𝑝

𝜀𝑛

(𝜀)𝜌𝑝(𝜀)𝑃[1 − 𝑓𝑛(𝜀)]𝜌𝑛(𝜀)𝑑𝜀   (2)   

 

𝐼𝑛→𝑝 = 𝐴∫ 𝑓𝑛

𝜀𝑝

𝜀𝑛

(𝜀)𝜌𝑛(𝜀)𝑃[1 − 𝑓𝑝(𝜀)]𝜌𝑝(𝜀)𝑑𝜀     (3) 

 

The total tunnel current in the p-n junction is equal to the difference between 

expressions (2) and (3): 

 

𝐼 = 𝐴∫ 𝜌𝑝(𝜀)
𝜀𝑝

𝜀𝑛

𝜌𝑛(𝜀)𝑃[𝑓𝑛(𝜀) − 𝑓𝑝(𝜀)]𝑑𝜀     (4) 

      - transfer coefficient − 𝑇𝐶(𝐸𝑋) and distribution functions − 𝑁(𝐸𝑋)     can be 

specified as follows [3]: 

𝑁(𝐸𝑋) = ∫ [𝑓𝑛(𝜀) − 𝑓𝑝(𝜀)]
∞

0

𝑑𝐸р    (5) 

𝑇𝐶(𝐸𝑋) = ∫ 𝑃
𝑚𝑎𝑥

𝑚𝑖𝑛

∙ 𝜌𝑝(𝜀) ∙ 𝜌𝑛(𝜀)𝑑𝜀  (6)   

where, 𝜀𝑛and 𝜀р - respectively, the minimum energy that electrons can accept in the 

conduction band of the n-semiconductor, and the maximum energy that electrons can 

accept in the valence band of the p-semiconductor. 

If we take the lower part of the conduction band as the beginning of the energy axis, 

that is, if we take 𝜀𝑛 = 0  (Fig. 1), 

 

and based on this figure for the energy 𝜀р below [4]: 
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𝜀р = 𝑞𝑉𝑘 − 𝐸𝑔 = 𝜇𝑛 + 𝜇𝑝    (7) 

where, 𝜇𝑛 and  𝜇𝑝are the chemical potentials (Fermi level) for the fields n and p, 

respectively. Also, when an external voltage is applied, we have:  

𝜀р = 𝑞𝑉𝑘 − 𝐸𝑔 − 𝑞𝑉   (8) 

And the distribution function is determined by the expressions: 

 

𝑓𝑛(𝜀) =
1

𝑒
𝜀−𝜇𝑛
𝑘∙𝑇 + 1

      (9) 

𝑓𝑝(𝜀) =
1

𝑒
𝜀+𝜇𝑝−𝑞∙𝑉𝑘+𝐸𝑔+𝑞∙𝑉

𝑘∙𝑇 + 1

     (10) 

The density of states of electrons and holes is equal to   𝜌𝑛(𝜀) = 𝐶√𝜀, 𝜌𝑝(𝜀) =

𝐶′√𝑞𝑉𝑘 − 𝐸𝑔 − 𝑞𝑉 − 𝜀,   here C and C ' are constant numbers.  Taking into account the 

above, using expression (12), we derive the following expression for the tunnel current 

[5]:   

 

𝐼𝑇 =
4𝜋𝑃𝑚𝑒𝑓𝑓𝑞

ℎ3
∫ (

1

𝑒
𝜀−𝜇𝑛
𝑘𝑇 + 1

𝑞𝑉𝑘−𝐸𝑔−𝑞∙𝑉

0

−
1

𝑒
𝜀+𝜇𝑝−𝑞𝑉𝑘+𝐸𝑔+𝑞𝑉

𝑘𝑇 + 1

)√𝜀(𝑞𝑉𝑘 − 𝐸𝑔 − 𝑞𝑉 − 𝜀)𝑑𝜀       (11)  

Using expressions (9) and (10), we find qVk and substituting expression (12), we 

obtain the following expression for the tunnel current: 

 

𝐼 = 𝐴 ∫ √𝜀(𝜇𝑛 + 𝜇𝑝 − 𝜀 − 𝑞𝑉)

𝜇𝑛+𝜇𝑝−𝑞𝑉

0

(
1

exp (
𝜀 − 𝜇𝑛
𝑘𝑇 )

−
1

𝑒𝑥𝑝 (
𝜀 − 𝜇𝑛 + 𝑞𝑉

𝑘𝑇
) + 1

 )𝑑𝜀,    (12) 

 

Here  𝐴 =
4∙𝑃∙𝜋∙𝑚𝑒𝑓𝑓∙𝑞

ℎ3
   will be 
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For the 1st term in the expression for the total tunneling current given in expression 

(1) above, using the given expression (12), the Tsu-Esaki model, ignoring the 2nd term 

due to its smallness compared to the other terms , and instead of 3rd term for the 

diffusion current using the Shockley expression, we have the following expression for 

the tunneling current: 

𝐼 = 𝐴∫ √𝜀(𝜇𝑛 + 𝜇𝑝 − 𝜀 − 𝑞𝑉)
𝜇𝑛+𝜇𝑝−𝑞𝑉

0
(

1

exp(
𝜀−𝜇𝑛
𝑘𝑇

)
−

1

𝑒𝑥𝑝(
𝜀−𝜇𝑛+𝑞𝑉

𝑘𝑇
)+1
 ) 𝑑𝜀 +

𝐼0 (𝑒𝑥𝑝 (
−𝑞𝑉

𝑘𝑇
) − 1)    (13)    

Taking into account this expression (13), we derive the formula for the diffusion 

capacity according to expression (2): 

 

С1 =
𝜏

2
∙ 𝑅−1 =

𝜏

2
(−𝑇𝐴√(𝜇𝑛 + 𝜇𝑝 − 𝑞𝑉)𝑉 ({ lim

𝜀→∞
(𝑘𝑇𝑙𝑛 (𝑒−

−𝜀+𝜇𝑛
𝑘𝑇 + 1) +

𝑘𝑇𝑙𝑛 (𝑒−
−𝜀+𝜇𝑛
𝑘𝑇 ) + 𝑘𝑇𝑙𝑛 (𝑒

𝜀−𝜇𝑛+𝑞𝑉

𝑘𝑇 + 1) − 𝑘𝑇𝑙𝑛 (𝑒
𝜀−𝜇𝑛+𝑞𝑉

𝑘𝑇 ) + 𝑘𝑇𝑙𝑛 (𝑒
−𝜇𝑛
𝑘𝑇 + 1) −

𝑘𝑇𝑙𝑛 (𝑒
−𝜇𝑛
𝑘𝑇 ) − 𝑘𝑇𝑙𝑛 (𝑒

−𝜇𝑛+𝑞𝑉

𝑘𝑇 + 1) + 𝑘𝑇𝑙𝑛 (𝑒
−𝜇𝑛+𝑞𝑉

𝑘𝑇 ))  , 0 < 𝐼𝜋𝑘𝑇 + 𝜇𝑛  ва  0 < 𝐼𝜋𝑘𝑇 −

𝑞𝑉 + 𝜇𝑛        }) + 𝑇𝐴∫ (√𝜀(𝜇𝑛 + 𝜇𝑝 − 𝜀 − 𝑞𝑉)𝑑𝜀)
𝜇𝑛+𝜇𝑝−𝑞𝑉

0
)({ lim

𝜀→∞
(
𝑒
𝜀−𝜇𝑛+𝑞𝑉

𝑘𝑇

𝑒
−
−𝜀+𝜇𝑛
𝑘𝑇 +1

−

𝑒
−
−𝜀+𝜇𝑛
𝑘𝑇

𝑒
−𝜇𝑛
𝑘𝑇 +1

) , 0 < 𝐼𝜋𝑘𝑇 + 𝜇𝑛  ва  0 < 𝐼𝜋𝑘𝑇 − 𝑞𝑉 + 𝜇𝑛})-(𝐼0𝑞𝑒
−𝑞𝑉

𝑘𝑇 )
𝜏

2
               (14) 

and using this expression, we get a plot of capacitance versus voltage (Figure-2). 
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Now let's determine the quality factor “𝐾1” of a tunnel diode based on germanium-

Ge by expression (14): 

 

𝐾1 =
𝐼𝑃
С1
=
𝐼0𝑆𝑒

𝐵𝐸𝑔√
𝜖𝑚(𝑁𝐴𝑁𝐷)
𝑁𝐴+𝑁𝐷

С1
 (15) 

Here 𝐸𝑔- is the band gap for elements-Ge, 𝐼0 is the saturation current, S is the contact 

surface, B is a constant expression, ϵ- is the electrical constant for Ge, 𝑁𝐴and 𝑁𝐷 is the 

number of charge carriers in the n and p field. 

Instead of the term - 3 of the diffusion current in expression (13), i.e., in the place of 

the term of the unheated diffusion current, substituting the expression for the 

diffusion current for electrons heated under the action of an extremely high frequency 

field, we obtain the expression for the current for a heated electron tunnel diode with 

a semiconductor - Ge : 

𝐼 = 𝐴 ∫ √𝜀(𝜇𝑛 + 𝜇𝑝 − 𝜀 − 𝑞𝑉)

𝜇𝑛+𝜇𝑝−𝑞𝑉

0

(
1

exp (
𝜀 − 𝜇𝑛
𝑘𝑇 )

−
1

𝑒𝑥𝑝 (
𝜀 − 𝜇𝑛 + 𝑞𝑉

𝑘𝑇
) + 1

 )𝑑𝜀

+ 𝐼0 (
𝑇

𝑇0
)
3

𝑒𝑥𝑝 (
𝐸𝑔𝑞

𝑘𝑇
(1 −

𝑇0
𝑇
))(𝑒

𝑞𝜑
𝑘𝑇
−
𝑞(𝜑−𝑞)
𝑘𝑇𝑒 − 1)     (16) 

Using this expression, we derive the formula for the diffusion capacitance of a tunnel 

diode, taking into account the heating of electrons, and we present a graph (Figure-

3): 

  

С2 =
𝜏

2
∙ 𝑅−1 =

𝜏

2
(−𝑇𝐴√(𝜇𝑛 + 𝜇𝑝 − 𝑞𝑉)𝑉 ({ lim

𝜀→∞
(𝑘𝑇𝑙𝑛 (𝑒−

−𝜀+𝜇𝑛
𝑘𝑇 + 1) +

𝑘𝑇𝑙𝑛 (𝑒−
−𝜀+𝜇𝑛
𝑘𝑇 ) + 𝑘𝑇𝑙𝑛 (𝑒

𝜀−𝜇𝑛+𝑞𝑉

𝑘𝑇 + 1) − 𝑘𝑇𝑙𝑛 (𝑒
𝜀−𝜇𝑛+𝑞𝑉

𝑘𝑇 ) + 𝑘𝑇𝑙𝑛 (𝑒
−𝜇𝑛
𝑘𝑇 + 1) −

𝑘𝑇𝑙𝑛 (𝑒
−𝜇𝑛
𝑘𝑇 ) − 𝑘𝑇𝑙𝑛 (𝑒

−𝜇𝑛+𝑞𝑉

𝑘𝑇 + 1) + 𝑘𝑇𝑙𝑛 (𝑒
−𝜇𝑛+𝑞𝑉

𝑘𝑇 ))  , 0 < 𝐼𝜋𝑘𝑇 + 𝜇𝑛  ва  0 < 𝐼𝜋𝑘𝑇 −

𝑞𝑉 + 𝜇𝑛        }) + 𝑇𝐴∫ (√𝜀(𝜇𝑛 + 𝜇𝑝 − 𝜀 − 𝑞𝑉)𝑑𝜀)
𝜇𝑛+𝜇𝑝−𝑞𝑉

0
)({ lim

𝜀→∞
(
𝑒
𝜀−𝜇𝑛+𝑞𝑉

𝑘𝑇

𝑒
−
−𝜀+𝜇𝑛
𝑘𝑇 +1

−
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𝑒
−
−𝜀+𝜇𝑛
𝑘𝑇

𝑒
−𝜇𝑛
𝑘𝑇 +1

) , 0 < 𝐼𝜋𝑘𝑇 + 𝜇𝑛  ва  0 < 𝐼𝜋𝑘𝑇 − 𝑞𝑉 + 𝜇𝑛})+

(

 
 

 

e

Tk

Vq

kT

q
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T

T
eE

s

TkT

eeTqI e

g





















3

0

1

3 0

0



)

 
 𝜏

2
                      

(17) 

From here, there is a sharp increase in the diffusion capacity due to heated electrons 

(Figure-3) in relation to the diffusion capacity determined without electron heating 

(Figure-2). For an electron heated under the action of a microwave field, the quality 

factor К2  of a semiconductor tunnel diode-Ge is determined as follows: 

 

𝐾2 =
𝐼𝑃
С2
=
𝐼0𝑆𝑒

𝐵𝐸𝑔√
𝜖𝑚(𝑁𝐴𝑁𝐷)
𝑁𝐴+𝑁𝐷

С2
    (18) 

                                 

Bring out 

In contrast to the theory of Knott and De Mass, according to the Tsu-Esaki model for 

any heterojunction or heavily doped semiconductor tunnel diode for the total current 

consisting of the sum of diffusion and tunnel currents in heated and unheated states 

of electrons, a theoretical expression for the total current is obtained based on the 

Tsu-Esaki model . Here, as well as in the theory of Knott and De Mass, a sharp 

increase in the diffusion capacity was observed due to heated electrons compared to 

the unheated state of electrons. It has been observed that an increase in the diffusion 

capacitance leads to a change in the quality factor of the tunnel diode. 
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