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ABSTRACT

In this paper, we study the properties of self-similar solutions of a cross-diffusion parabolic
system. The asymptotic behavior of self-similar solutions are analyzed for both the slow and
fast diffusive regimes. It is shown that coefficients of the main term of the asymptotic of
solution satisfy some system of nonlinear algebraic equations.
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1.Introduction
Consider in Q={(t,x): t>0, xeR"} the cross-diffusive system of equations in non-

divergence form with Cauchy conditions:

% 5U, " . -2 - A
V|k5F:u“v0xF%;ﬂVqu vm)+V|Hﬁ (1)

u,(0,x)=u,(x), xeR"
(i=12) ()

wherel,n, ek, 5>0,p>2,m 21,(i =1, 2) the numerical parameters,V(-)=grad (-),

u =u (x,t) >0 are the solutions. It is clear that the system (1) is degenerate. Therefore, it does
not have classical solutions on the domain defined by equations.u;(t,x)=0,Vu,(t,x)=0
meaning system (1) may not have a classical solution. Therefore, in this case we consider a

weak solution having the property ui“iV(|x|n ur vu | Vui)e C(Q)(i=1,2). and obeying to

the system (1) in sense of a distribution [1]. Non-divergent form equations and system of
equations (1) are often used to describe various physical phenomena, such as the diffusive
process for biological species, the resistive diffusion phenomena in force-free magnetic fields,
curve shortening flow, spreading of infectious disease and so on, see for [1-18].
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2. The self-similar system of equations
Here, we provide a method of nonlinear splitting [2] for construction of self-similar equation
for the system given by Egs. (1). We look for the solutions u; (t,x)(i =1,2) in the form

ui(x,t)=Ui(t)-wi(r(t),go(|x|))(i:1,2) (3)
Then, we obtain T, (t) as T, (t) =(T +t)-4 ﬁ.( =12).

k(p—2)+ _
Case 1. Let p>1+n and (p-2) L !

+1> 0 be.From Egs. (3) and (1), we obtain

1_181 1_182
the following system of equations:
oW, a; 1-s 0 s-1 m-—laW'kpzaW l// Bi 1 i
—L =W = Hiwsh ———w | (1=1,2 4
5 =W G(p((o LN s Bl e Al (i=12) )
where:
o
Mat o#0
r(t)= o
In(T+t) at o=0
k(p-2 _ k(p-2 1Y Pl
500 XP=2te, m-1 %{ e 1”] orl)=r ",
1_131 1_182 1_:Bi 1_ﬂ3—i
— _ _ N
S:p(N 1)+np+| p(l 1)’ r= 3%
i=1

k(p-2)+a, LMl k(p 2)+a m,-1
+
1_131 1 ﬂz 1- ﬂz 1_ﬂ1
It is easy to establish that the system (4) has the self-similar solution

Wl(X'T): fl(g),WZ(X,Z')Z fz(g) c=—7" (| |) ()

P

T
where & is self-similar variable and the functions f (&), f,(&)fulfill the following

approximately self-similar system of equations

wois O [ ponemaldf " df | £ df ;1 }_
f; 1 f3—| i fi _—fi =0
& d&{"g dg déj p dé '”( -y ©
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In the following, we will consider nontrivial, nonnegative solutions of the system (6) satisfying
the following conditions:
f.(0)=M, f,(0)=M,,M, eR,M, eR o
f,(d,)=f,(d,)=0,0<d, <0, 0<d, <0
3. EXPLICIT ESTIMATE AND GLOBAL SOLUTION

Using the solution comparison method of [1] and the standard equations method of [2] for
solving the problem (6)-(7), we can obtain the estimates for the solution of the problem (1)-

2).
We note that the functions:
L(&)=A(a-¢&)" f(&)=A(a-¢)" (8)
. ~ (P-1)(k(p-2)+ay; —m +1)
1 T K(p-2)(K(p-2)+ & + )+ ey, — (M ~1)(my, —1)

b, :(7ik _1)(p_2)+7/3—i(mi _1)+7i -1
A (i=1,2) found numbers.(b) =max(0,b)

The following theorem is proved.
Theorem 1. Let the conditions of y, >0

" =

R ST W S 77
1 Sy.
u;(t,0)<u,(t,0),xeR" =12
Then the problem (1)-(2) has a global solution, which satisfies estimates
0 (6X)<u, (LX) =(T+0)A - A(a-&)"  inQ.
Proof. Theorem 1 is proved by the comparing solution method [1]. Hence, comparing solution
methods it is taken the functions uj, (t,x). Substituting (8) in (1) the following inequality can

Kk |P—2
df|" " df, gdfw{fi,,i 1 f)<0
dé ) pdé 1-45
9)

dé
If the specific form (8) is given for the functions f,(&)(i=1,2) inequality (9) can be rewritten

d 1 g m—
be obtained: f f 5[5 lfs_.l

as follows:
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i1 A 1 7iS
W{Aﬂ (a-¢7) 1—ﬁi]mpgo
It is easy to check that A%a"/7 > Aﬂi‘l(a — &
Then, according to the hypotheses of Theorem 1 and comparison principle, it will be:
u (t,x)<ug, (t,x) ,xeR"n Q,
if u(t,x)<u, (t,x) ,xeR",

The results obtained in the above theorem are a generalization of the results in [18]. If we take
k=1and p=2, inour given theorem, then the results in [18] are obtained.

)?’iﬂi*?’i

4. The asymptotic behavior of self-similar solutions of the problem (6)-(7)
4.1. The case of slow diffusion.
Let us introduce the following notations:

Se’” 1 —(1+nB-n)n

N TN/ s
7(a_e_,7) ’2|(77) p}/p—l’a3l(77) 7/p(a_e77]) yp(l_ﬁl)(a_e—ﬂ)

K(p-2)+e, m-1_k(P=2)*a, m -1 ey e following theorem is valid:
1_ﬂ1 1_182 1_ﬂ2 1_ﬁ1

a;(n)=-7;+ va, ()= vie

Assume

11
PP

Theorem 2. Let y, > 0. Then compactly supported solution of the problem (6),(7) as |x — a
has the following asymptotic behavior:

i

f(£)=c [HJ | o) (10)

P

if one of the the foIIowing conditions are fulfilled:
(1) 1+ 7B, -y, =0and 1+ 5,3, — 7, =0 the coefficients c, (i=12) are the solutions of the

systems of nonllnear algebraic equations:
auC e KT b ae ey —agdt 4 =0

8, ¢, " e Ky +aﬂc; “y, — 8 =0
(2) 1+y6,—r,=0and 1+y,8 -, >0the coefficients ¢ (i=12) are the solutions of the

systems of nonllnear algebraic equations:
anclk"”z)”C”‘l*lkp‘z " a,e y —act =0
a21 k(p- 2)+1C1m2—1kp 2 +a22 1 az _0
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(3) 1+p8 -y >0and 1+ y,0, —y, =0the coefficients ¢ (i=12) are the solutions of the
systems of nonlinear algebraic equations:

8,0 e K I a0, =0

8, " Ky a0y, gl =0

(4) 1+y,6 -7 >0and 1+y,8 -y, >0the coefficients ¢ (i=12) are the solutions of the
systems of nonlinear algebraic equations:

2P K A a,e =0

auCy " K T a0y, =0

Proof. The proof of this theorem is given in [4].

Corollary 1. If inequality y, >0 holds, then the generalized solution of problem (3.2.1)-(3.2.2)

has the following

()~ (T +t)1lﬁ(a_(|x|rij‘f1]% (1+0(1))

b1l
asymptotics in |[x| —>a P z”, where ¢, (i =1,2) are definite constants.

k(p—2)+0{1 +m1_1

Case 2. Let p=Il+n and +1>0 be. From Egs.(3) and (1), we

1_181 1_132
obtain the following system of equations:
W @[ nalowE T aw || o
E=Wi % Wy % % W | W % %
(i=1,2) (11)

ﬁ(wﬂ —iwi],(i =1,2)
T 1-8
where:

(T+1)? k(p-2)+a m -1 o

t)= , =In|x|,T >0y, = ' ! 1 =12

O_:k(p—2)+al+ml_1+1:k(p—2)+a2+m2_1+1

1_ﬂ1 1_:32 1_132 1_ﬂ1

Given that this system of equations represents a physical process, the solution can be estimated
from above, knowing that the continuous flow is
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Theorem 3. Let the conditions of y, >0

ai+k(p- m; — - -2 1
Vi At 2)"6‘3—'i1kp2|7/7/i|p :B

u; (t,0)<u,(t,0), ,xeR"i=12
Then the problem (1)-(2) has a global solution, which satisfies estimates

0 (6X)<u, (LX) =(T+0)4 - A(a-&)"  inQ\{0}.

k(p-2 _

Let p=I+n and (P )+a1+ml 1+1>0be.
1_ﬂ1 1_182

k(p—2)+0£l m -1

Case 3. Let p=I+n and =0 be. As mentioned in case 2, we transfer

+
1_131 1_ﬂ2
(3) to the system of equations (1). Here functions z(t), ¢(||) are

defined in 7(t)=(T +t),(|x])=In|x|,T >0 ways. If we transfer functions (3) to the system
of equations (1), as a result we will have the system of equations (11). Theorem 3 is applicable
here.

Case 4. Let p=I+nand B =1(i=12) be. We will look for the solution of the problem (1)-
(2) in the following form:

0 (68) =8, (1) w (< (1), 0((x)) (1=2.2)
[ o (t)=e' (i= and 7(t)= i are here
Given that T, (t)=e' (i=1,2) and 7(t) (@ rmk(p=2) here.

We will have the following system of equations.

M, _ a[wmil oW aWi](i:l,Z) (12)

o 0" (o] 29

p-2

It we make w(z(t),¢(]x]))=f,(&) .(i=12)substitutions in (12), then we will have the

following system of automodel equations.

f
+=—=0(i=12) (13)

@ Website:

o https://wos.academiascience.org




WEB OF SCIENTIST: INTERNATIONAL

SCIENTIFIC RESEARCH JOURNAL
ISSN: 2776-0979, Volume 4, Issue 5, May, 2023

We deal with finding non-negative solutions of the system of equations (13) satisfying the
conditions (7).

Slow diffusion. In order to derive the global conditions of the solution in the case of slow
diffusion, we look for solutions of u, (t,x) (i =1,2) in the following form.

b (tx), =e'f(£), fi(&)=A(a-¢)’
Theorem 4. Let the conditions of y, >0, p(1-¢;)<0

a;+k(p- m 11, p— 2 1
Vi At 2)'Abli1kp2|77i|p :6

u;(t,0)<u,(t,0) ,xeR"i=12
Then the problem (1)-(2) has a global solution, which satisfies estimates

u; (t,x) <uj, (t,%) in Q\{0}.
Fast diffusion. Suppose that the system (13) satisfies the conditions
£(0)=0, f, (=) =0.
Theorem 5. Let the conditions of », <0, p(1-¢;)>0

a;+k(p- m.—1j, p— -2 1
YieaN Al 2)"A§Jilkp2|7/7i|p :_6

u(t,0)>u(t,0) , xeR"i=12
Then the problem (1)-(2) has a global solution, which satisfies estimates
u; (t,x)<u, (t,x) in Q\{0}.
Computational experiment and visualization results.
We solve the problem numerically for the case where Q = t,x) t>0,xeR"! is N=2 in

p-2 p-2
J . 0 au] X[ u%
0%,

o
Sl g

Here it is defined as u=u(t,x,X, ),V =V(t,X,X, ), [x|=/x + X .

ouk auk

e R
OX,

%,
|xn@:v"‘1i u™*
ot oX,

the domain (1)-(2).
o o
0%,

u(O,x)=uo(x)20,\;(0,x)=vo(x)20, xeR?
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In order to numerically solve this problem, we use one of the variable direction methods, the
"longitudinal-transverse” differential scheme, in other words, the Pisman-Reichford
differential scheme.

3 1
2 Ox 3 2 1 Ox

k=12,p=68m =135m =145 k=12,p=28m=137,m =146
& =02,0,=02,4=04,5=06 a,=02.0,=02.4=04.5,=06

where Figure 1 represents the slow diffusion process and Figure 2 represents the fast diffusion
process.
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