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Abstract 

This study models and analyzes the reliability of 6-10 kV rural power supply systems, 

emphasizing the assessment of SAIDI and SAIFI reliability indices using a 

Feedforward Neural Network (FNN) model. Due to the absence of backup systems, 

unplanned outages in rural power grids can significantly disrupt electricity supply. 

Planned outages are managed through maintenance schedules, whereas unplanned 

outages arise from various factors, including equipment failure, natural events, and 

human error. The FNN model is employed to forecast SAIDI and SAIFI values based 

on historical data, allowing for predictive insights into system reliability. Results 

indicate a projected increase in outage indices over the next five years, underscoring 

the need for proactive measures to enhance system resilience. 
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Introduction 

The reliability of the power supply system is characterized by the number of 

interruptions [65]. Interruptions in the network are divided into planned and 

unplanned interruptions. Due to the absence of a backup network in the power supply 

networks of the research object, consumers are completely disconnected from the 

network during planned maintenance or inspections. Research shows that planned 

outages mainly occur for the following reasons [66] (Figure 2.1): 

1. Routine and major repairs of 6/10 kV overhead lines 

2. Routine and major repairs of 6/10 kV cable lines 

3. Technical inspection of transformers 

4. Major repairs of transformers 

5. Repairs of 6/10 kV cells 

6. Routine maintenance of switching devices 

7. Technical inspection of measuring transformers 
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Figure 2.1. Quantitative Shares of Reasons for Planned Outages 

 

For analysis, the number of planned and emergency outages in the research object 

from January 7, 2021, to July 7, 2023, was examined. The results indicate that 

planned outages are primarily observed between 9:00 AM and 5:00 PM during the 

day (Figure 2.2). 

 
Figure 2.2. Indicators of Planned Outages 

 

During the research, it was determined that emergency outages often occur due to 

the following reasons [67] (Figure 2.3): 
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1. Natural disasters 

2. Failure of equipment and machinery 

3. Overloading 

4. Human errors 

5. Trees and vegetation 

6. Impact of animals 

 
Figure 2.3. Quantitative Methods of Causes for Emergency Outages. 

 

When emergency outages were distributed across each feeder, it was found that the 

highest number of outages occurred on the Qipchoq feeder (Figure 2.4). Therefore, 

the SAIDI and SAIFI values model is presented in the dissertation based on data from 

the Qipchoq feeder. 

 
Figure 2.4. Quantitative Methods of Emergency Outages by Feeder 

 



 
                                                              

              ISSN: 2776-0979, Volume 4, Issue 7, July, 2023 

206 
 
  

In normal conditions, SAIFI represents the number of outages per consumer within a 

specified time interval and is determined as follows: 
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In that case, Ca(i) – The number of disconnected consumers in the power supply 
system of the energy supply organization during the calendar year; t(i) – duration of 
the outage in the power supply, in hours; Cs -  total number of consumers [68,69]. 
SAIDI represents the average outage duration per consumer in the power supply 
system under normal conditions, expressed in hours, and is determined as follows: 
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where, Ca(i) – The number of disconnected consumers in the power supply system of 
the energy supply organization during the calendar year; Cs – total number of 
consumers in the power supply system [70,71]. 
Data on Ca(i), t(i), Cs for the research object from 2000 to 2023 were analyzed, and 
the planned and unplanned SAIDI and SAIFI values were determined. The results, 
presented as average values, are shown in Table 2.1. 

Table 2.1. 

Year 
Planned Unplanned 

SAIDI SAIFI SAIDI SAIFI 
2000 4,17 6,22 6,67 12,05 
2001 4,35 6,13 6,96 12,26 
2002 4,53 6,26 7,25 12,52 
2003 4,71 6,39 7,54 12,78 
2004 4,89 6,52 7,83 13,04 
2005 5,07 6,65 8,12 13,30 
2006 5,25 6,78 8,41 13,57 
2007 5,43 6,91 8,70 13,83 
2008 5,62 7,04 8,99 14,09 
2009 5,80 7,17 9,28 14,35 
2010 5,98 7,30 9,57 14,61 
2011 6,16 7,43 9,86 14,87 
2012 6,34 7,57 10,14 15,13 
2013 6,52 7,70 10,43 15,39 
2014 6,70 7,83 10,72 15,65 
2015 6,88 7,96 11,01 15,91 
2016 7,07 8,09 11,30 16,17 
2017 7,25 8,22 11,59 16,43 
2018 7,43 8,35 11,88 16,70 
2019 7,61 8,48 12,17 16,96 
2020 7,79 8,61 12,46 17,22 
2021 7,97 8,74 12,75 17,48 
2022 8,15 8,87 13,04 17,74 
2023 8,33 9,23 13,33 18,01 

 



 
                                                              

              ISSN: 2776-0979, Volume 4, Issue 7, July, 2023 

207 
 
  

Planned outages are carried out by the regional power grid company employees 

according to a specific schedule. In such cases, it is not feasible to model SAIDI and 

SAIFI values for planned outages; they can only be regulated through digital twin 

technology. However, since unplanned outages are uncontrolled, it is advisable to 

model these situations to forecast SAIDI and SAIFI values in advance, enabling 

problem resolution based on the forecast results. 

Modeling uses an FNN neural network. Through FNN, the mathematical model below 

demonstrates how data transformation occurs across network layers and how final 

forecast values are calculated: 

Let us define: 

Layer 1 (From Input to Hidden Layer 1): 

For each neuron i in the first hidden layer: 

𝑎𝑖
(1)

= 𝜎 (𝑊𝑖
(1)

⋅ 𝑥 + 𝑏𝑖
(1)

)     𝑎𝑗
(2)

= 𝜎 (∑ 𝑊𝑗𝑖
(2)

𝑖 ⋅ 𝑎𝑖
(1)

+ 𝑏𝑗
(2)

)        (2.3) 

where, 

- 𝑥 — Input feature (year) 

-  𝑊(𝑙)— 𝑙- Weight matrix for the layer.. 

-  𝑏𝑙   —   𝑙 - Bias vector for the layer 

-  𝑎𝑙—   𝑙 - Activation value of the layer. 

-  𝜎  — Activation function (in this case, linear) [72,73]. 

Since the activation function is linear, it simplifies as follows: 

 

𝑎𝑖
(1)

= 𝑊𝑖
(1)

⋅ 𝑥 + 𝑏𝑖
(1)

                                       (2.4) 

Layer 2 (From Hidden Layer 1 to Hidden Layer 2): 

For each neuron jj in the second hidden layer [74]: 

𝑎𝑗
(2)

= 𝜎 (∑ 𝑊𝑗𝑖
(2)

𝑖 ⋅ 𝑎𝑖
(1)

+ 𝑏𝑗
(2)

)                          (2.5) 

Also, with a linear activation function [75]: 

𝑎𝑗
(2)

= ∑ 𝑊𝑗𝑖
(2)

𝑖 ⋅ 𝑎𝑖
(1)

+ 𝑏𝑗
(2)

                          (2.6) 

Layer 3 (From Hidden Layer to Output Layer): 

For the output neuron kk: 

𝑎𝑘
(3)

= 𝜎 (∑ 𝑊𝑘𝑗
(3)

𝑗 ⋅ 𝑎𝑗
(2)

+ 𝑏𝑘
(3)

)                          (2.7) 

With a linear activation function: 

𝑎𝑘
(3)

= ∑ 𝑊𝑘𝑗
(3)

𝑗 ⋅ 𝑎𝑗
(2)

+ 𝑏𝑘
(3)

                          (2.8) 
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3. Final Output:  

The final output of the model, i.e., the forecasted SAIDI or SAIFI value for a given 

year, is calculated as follows [76]: 

Прогноз Қиймат = 𝑎𝑘
(3)

                          (2.9) 

4. Loss Function: 

The model minimizes the Mean Squared Error (MSE) loss function using 

backpropagation [77]: 

MSE =
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)

2𝑛
𝑖=1                           (2.10) 

Where: 

-  𝑦𝑖   — Actual value. 

-  𝑦𝑖̂  — Forecasted value. 

-  𝑛  — Number of training data points. 

5. Optimization: 

The model updates weights and biases during each epoch by calculating the gradients 

of the loss function and applying the Adam optimizer. Initially, the epoch value for the 

model is varied from 0 to 500, and the optimal epoch value is determined by 

measuring validation error (Figure 2.5). 

 
Figure 2.5. Result of Laboratory Analysis for Determining the Optimal 

Epoch Value 

 

Based on the data in Figure 2.5, the optimal epoch value is found to be 350. 

The optimal values for the neurons in the input, hidden, and output layers are 

determined by testing various combinations (Figure 2.6). 
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Figure 2.6. Result of Laboratory Analysis for Determining Neuron 

Values in Input, Hidden, and Output Layers 

The laboratory results in Figure 2.6 indicate the optimal neuron parameters: 15 

neurons in the input layer, 15 neurons in the hidden layer, and 1 neuron in the output 

layer, achieving the smallest error 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠 = 0.000706 . 

 
Figure 2.7. Laboratory Result for Determining the Activation Function 



 
                                                              

              ISSN: 2776-0979, Volume 4, Issue 7, July, 2023 

210 
 
  

Another key parameter is the activation function. Based on the characteristics of the 

input data, activation functions such as ReLU, tanh, sigmoid, and linear are tested to 

identify the function that yields the lowest error. As shown in Figure 2.7, the linear 

activation function was selected as it achieved the lowest error of 0.00071. 

Based on the selected values, the training and test model values are compared with 

the actual values using a regression method, and a correlation coefficient is calculated 

to characterize the model error (Figure 2.8).  

 
Figure 2.8. Regression Analysis of Train and Test Model vs. Actual 

Values 

 

The correlation coefficients for the training and test values are 0.9943 and 0.9965, 

respectively, indicating that the model's results are reliable for use. The SAIDI and 

SAIFI values forecasted for the next 5 years based on this model are presented in Table 

2.2. 

 

Table 2.2. 5-Year SAIDI and SAIFI Indicators Obtained from the FNN 

Model for Determining SAIDI and SAIFI 
Йил SAIDI SAIFI 

2024 13.613 18.259 

2025 13.902 18.520 

2026 14.191 18.780 

2027 14.481 19.041 

2028 14.770 19.301 
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The results obtained from the FNN model for determining SAIDI and SAIFI in Table 

2.2 indicate that the SAIDI and SAIFI values are expected to increase further in the 

coming years. 

 

Conclusion 

This research highlights the significant impact of unplanned outages on rural power 

supply reliability, with SAIDI and SAIFI indices projected to increase in the coming 

years. By implementing an FNN model, this study successfully forecasts reliability 

trends, offering valuable insights for proactive maintenance and system 

improvements. The findings underline the potential of digital twin technology and 

machine learning models in managing and predicting reliability parameters. Future 

work should consider integrating real-time monitoring and optimization techniques 

to reduce outage durations and improve overall system robustness, ensuring better 

service for rural consumers. 
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