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Abstract 

The rapid progress of Deep Learning has driven advancements in image processing 

and computer vision, making artificial neural networks the standard tool for these 

tasks. This paper focuses on explaining neural networks, particularly in object 

detection models, and aims to build a practical Automatic License Plate Recognition 

system. The system's development is driven by the technology's wide applicability in 

various fields and its importance in modern infrastructure like road systems. The 

study will experiment with building the system and explore potential applications 

beyond license plate recognition, such as in autonomous driving. The thesis outlines 

goals including developing accurate algorithms for license plate detection and optical 

character recognition, integrating them into a real-time system, and evaluating its 

performance and applications. The ultimate aim is to create a beneficial automatic 

license plate recognition system that contributes to computer vision and inspires 

further research in the field. 

 

Introduction. 

Automatic License Plate Recognition (ALPR) is a technology that has been gaining 

popularity in recent years due to its wide range of applications in law enforcement, 

traffic management, toll management and parking systems. ALPR systems use 

cameras and image processing algorithms to capture and analyze license plate 

information from vehicles in real-time. 

The main goal of the article is to develop a practical and useful automatic license plate 

recognition system that can benefit society and improve our lives. By achieving the 

above goals, I hope to contribute to the field of computer vision and pattern 

recognition and inspire further research and development in this area. 

 

Main part  

Neural network theory, with roots spanning several decades, finds its inspiration in 

the human brain's structure and functionality. The goal is to model intricate 

relationships and patterns within data. This chapter navigates the terrain of neural 

network theory's history and critical concepts, coupled with an in-depth exploration 

of field-shaping models and algorithms. 
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These algorithms, employed in machine learning, mirror the structure and operation 

of neural clusters in the human brain. In its simplest form, artificial neural networks 

tweak neuron interconnections to facilitate learning. Hence, they're able to execute 

various tasks such as data pattern recognition and applying learned generalizations. 

The training phase involves presenting the network with inputs and corresponding 

labels or target values, helping it understand the properties it needs to learn from the 

input data [1]. 

By tweaking neuron interconnections, neural networks achieve impressive data 

classification accuracy. They can also apply learned knowledge to new, similar 

datasets. A fitting example is object recognition in images from a self-driving car's 

camera. Neural networks' recent popularity surge in machine learning is largely due 

to their success in visual object recognition. Another strength lies in machine 

translation, especially with dynamic or recurrent networks. They take sentence inputs 

and output word-by-word translations. Trained on large input sentence sets and their 

translations, recurrent networks find use in applications like Google Translate and 

have proved efficient at predicting chaotic dynamics. The common factor in these 

examples is supervised learning, with networks trained to pair specific labels with 

each input. 

  

YOLO Object detection model 

The You Only Look Once (YOLO) model is a revolutionary real-time object detection 

system that was first proposed in a 2016 paper by Joseph Redmon and his team [12]. 

Unlike other object detection models, YOLO applies a singular neural network to the 

entire image, splitting it into regions, predicting bounding boxes, and probabilities for 

each region. Its fast-processing speeds and accuracy make it ideal for various 

applications, such as autonomous driving, security systems, and video surveillance. 

This chapter provides an in-depth look into the workings of the YOLO object detection 

model. 

YOLO is built on the foundation of a unique convolutional neural network (CNN) 

architecture. The CNN is trained to predict the bounding boxes and class probabilities 

of objects in an image. It ingests an image and outputs a set of bounding boxes, each 

equipped with a class label and a confidence score. These bounding boxes indicate the 

objects' location in the image, while the class label and confidence score specify the 

class of the object and the probability of its presence. 

The YOLO model comprises two components: the CNN architecture and a post-

processing step. The CNN architecture contains a series of convolutional and max-

pooling layers, followed by a handful of fully connected layers. The convolutional 
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layers extract features from the input image, while the max-pooling layers reduce the 

feature's spatial resolution, rendering the network robust to minor changes in the 

objects' location [13]. The fully connected layers are employed to predict the bounding 

boxes and class probabilities of the objects. 

Post-processing involves filtering the CNN output to enhance object detection 

accuracy. The first step in post-processing is to implement a non-maximum 

suppression (NMS) algorithm to remove overlapping bounding boxes that refer to the 

same object. The second step involves setting a threshold on the confidence scores of 

the bounding boxes, considering only those bounding boxes that exceed a certain 

confidence score as valid detections. 

 
Figure 1. YOLO model architecture. 

 

Source: Young, B. (n.d.). Yolov5 network architecture. YOLOV5 network architecture 

- Programmer Sought. https://www.programmersought.com/article/12098280279/ 

(Accessed: 6 April 2023). 

 

The YOLO model is trained using a dataset of images with annotated objects. The 

network learns to adjust the layer weights to minimize the difference between the 

predicted and actual bounding boxes and class probabilities using a process known as 

backpropagation. 
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The YOLO model's strength lies in its speed and real-time capabilities. It can process 

images at approximately 45 frames per second, making it suitable for real-time 

applications such as self-driving cars and security systems [14]. Additionally, YOLO is 

well-known for its accuracy and simplicity. However, it does struggle with detecting 

small objects or objects in images with complex backgrounds or multiple objects of 

the same class. 

  

Putting YOLO into Action in Computer Vision 

When YOLO is applied to computer vision tasks, the first step involves dividing the 

input image into a grid of S x S cells. Each cell is tasked with the identification of 

objects that have their center within its boundaries. For each of these cells, YOLO 

predicts B bounding boxes along with corresponding confidence scores. These 

bounding boxes contain five elements: x, y, w, h, and confidence. The coordinates (x, 

y) determine the box's center relative to the cell boundaries, while w and h denote the 

box's width and height [16]. The confidence score reflects the model's belief that the 

box contains an object and how accurately it fits that object. 

YOLO stands out in computer vision due to its unique single pass through the neural 

network architecture. This architecture, which is end-to-end and fully convolutional, 

produces the final output using a 1x1 convolutional layer. Unlike other models that 

necessitate thousands of proposals to detect objects, YOLO considers the entire image 

at testing time, which means its predictions are influenced by the image's global 

context. 

YOLO's flexibility and speed make it invaluable for real-time detection tasks. By 

integrating traditionally separate stages of object detection, YOLO stands as a unified 

and efficient replacement for older methods. 

However, YOLO is not without its limitations. It tends to falter when dealing with 

small objects within groups and objects with unusual aspect ratios or orientations. 

These issues mainly arise due to YOLO's coarse spatial discretization and its 

constraint of predicting only one class per grid cell. 

YOLO implementation often involves the use of pre-trained models and transfer 

learning. These models are usually trained on extensive, diverse datasets like 

ImageNet or COCO. The Darknet architecture, developed by the same authors, 

provides the pre-trained weights for YOLO, simplifying its implementation in 

practical scenarios. The advent of deep learning libraries such as TensorFlow and 

PyTorch has further eased the adoption of YOLO, as they provide robust APIs and 

comprehensive support. 
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Computer Vision using OpenCV  

OpenCV, short for Open Source Computer Vision Library, is an open-source library 

that includes numerous computer vision and machine learning algorithms. It was 

designed to offer a shared infrastructure for computer vision applications and speed 

up the commercial use of machine perception [17]. 

OpenCV is frequently used in real-time image processing due to its efficient 

implementation in C/C++ and its capability for multi-core processing. The library 

offers extensive functionalities for image and video processing, like image/video I/O 

utilities, colour space conversion, image filtering, object detection, feature extraction, 

stereo vision, camera calibration, and machine learning [17]. 

When using YOLO for computer vision tasks, OpenCV can be used at various stages. 

During pre-processing, OpenCV can handle image normalization, resizing, and 

transformation tasks, all of which are critical for preparing the input data for the 

YOLO model. It can also augment training data to enhance the model's generalization 

capabilities. 

In the post-processing stage, OpenCV is instrumental in managing the output from 

the YOLO model. For example, it can draw bounding boxes around detected objects 

in an image, annotate images with labels, calculate confidence scores, and display or 

save the final output images. 

Furthermore, OpenCV has a DNN (Deep Neural Network) module that enables 

loading and running pre-trained models from popular deep learning frameworks, 

including YOLO. This feature amplifies OpenCV's versatility and usability in computer 

vision tasks involving object detection. 

 

Convolutional Neural Networks and their practical usage  

Convolutional Neural Networks (CNNs) are a category of deep neural networks 

devised to handle data with a grid-like topology, like an image composed of a grid of 

pixels. CNNs were initially suggested by Yann LeCun and his team in the 1990s [18]. 

A CNN's architecture is purposefully designed to leverage the 2D structure of an input 

image. This is achieved through a mathematical operation known as convolution. A 

convolution layers each input data with a set of learnable filters, each generating one 

feature map in the output [19]. By using more layers, the network can discern more 

complex patterns. 

CNNs include an input and an output layer, as well as multiple hidden layers. These 

hidden layers typically consist of convolutional layers, RELU layers (i.e., activation 

function), pooling layers, fully connected layers, and normalization layers. The 

pooling layer lessens the representation's spatial size, thereby reducing the 
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parameters and computations in the network and controlling overfitting [20]. The 

fully connected layer connects every neuron in one layer to every neuron in another 

layer, often used to output predictions. 

Beyond image and video recognition, CNNs have numerous practical applications. 

They're used in natural language processing (NLP), recommendation systems, and 

time series analysis. A specific variant of CNN, the 1D-CNN, has proven successful in 

interpreting the temporal aspect of data in areas like speech recognition or natural 

language processing [21]. Additionally, CNNs have been effectively applied in medical 

image analysis, autonomous vehicles, and other AI fields. 

In terms of object detection and the YOLO model, CNNs form the backbone that 

extracts features from input images. These features are then used by the YOLO model 

to predict class probabilities for each grid cell. The combination of CNNs and the 

YOLO framework has resulted in significant enhancements in object detection 

performance and speed. 

 

Implementation of ALPR system  

The proposed Automatic License Plate Recognition (ALPR) project uses a variety of 

tools and libraries, including Python [22], Flask, OpenCV [23], PyTesseract [24], and 

YOLO (You Only Look Once) [25], a real-time object detection system. The main goal 

of this project is to detect and recognize vehicle license plates from images and videos. 

This project can be dissected into several interconnected components, each of which 

plays a crucial role in the ALPR system's functionality. Here is an overview of each 

component: 

● YOLO-based Object Detection (deeplearning.py): The core of the project lies in 

the deeplearning.py script. This file contains the necessary code to read and 

preprocess images, execute YOLO-based object detection, perform non-

maximum suppression, extract detected regions (in this case, license plates), 

and draw bounding boxes with corresponding confidence scores. The YOLO 

model used in this project is loaded from an ONNX file. 

● Flask-based Web Application (app.py): The app.py file implements a web 

application using Flask [26]. The application provides an interface for users to 

upload an image, which is then passed to the object detection function from 

deeplearning.py. The application then stores the detected text (i.e., the license 

plate information) and returns the result back to the user interface. 

● Data Persistence (save_results.py, db.py, and preds.csv): The save_results.py 

file contains functions for saving prediction results (the recognized license plate 

text) to a CSV file. The db.py script utilizes SQLAlchemy, an SQL toolkit and 
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Object-Relational Mapping (ORM) system, to create a SQLite [27] database 

from the saved CSV file and provide functions for database querying. 

● Application Dependencies (requirements.txt): The requirements.txt file lists the 

Python libraries required to run the application. It includes Flask for the web 

application, numpy for numerical operations, OpenCV for image processing 

tasks, Pytesseract for Optical Character Recognition (OCR), and other essential 

libraries. 

● YOLO Model (best.onnx): This is the pre-trained YOLO model used for object 

detection. The ONNX (Open Neural Network Exchange) format allows for 

interoperability between different deep learning frameworks, facilitating the 

sharing of models. 

The project's structure follows a standard format for a machine learning-based 

application. It divides the various functionalities into separate scripts, each 

responsible for a specific task. This division ensures that the project is modular and 

maintainable. 

The primary user interaction occurs via the Flask web application. When a user 

uploads an image, it is first saved locally. Then, the YOLO model is used to detect 

objects (license plates) in the image. Once the objects are detected, the Pytesseract 

library is used to recognize and extract text from the license plate regions. 

The recognized text and corresponding image filename are then saved to a CSV file, 

ensuring a record of predictions is maintained. These results are also stored in an 

SQLite database, providing an efficient means to query past predictions. 

In essence, this project is a seamless integration of web development, deep learning-

based object detection, and optical character recognition, combined to deliver an 

efficient and practical Automatic License Plate Recognition system. 

 

Architecture of the ALPR system 

The Automatic License Plate Recognition (ALPR) system exhibits an architecture 

characterized by a blend of computer vision, machine learning, and web development 

components. Here, we delve deeper into the architectural exploration of the system, 

examining how these components interconnect and interact to form a cohesive, 

functional ALPR system: 

1. Front-end Layer (User interface): The front-end of the system is primarily 

web-based interface designed using Flask’s render_template function, which 

provides the capability to use HTML templates for the interface. The users interact 

with the system through this interface by uploading images containing the vehicles 

and their license plates. 
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2. Back-end Layer (Web Server and Processing Units): Once the image is 

uploaded, it is received at the server-side, implemented in Flask. The server saves 

the uploaded image locally and then sends it for processing. It follows a specific 

sequence of tasks that form the backbone of the ALPR system: 

- Image processing: This is the initial stage in the pipeline, where the input 

images are prepared for further processing. This preparation involves converting 

the image format to suit the YOLO model’s input requirements.  

- Object detection: The processed image is then fed into a pre-trained YOLO 

model to detect objects. In this context, the YOLO model is configured to identify 

license plates specifically.  

- Non-maximum Suppression: To ensure that each object is detected only once, 

non-maximum suppression is applied to the detected objects. This step eliminates 

multiple bounding boxes for the same object, keeping only the one with the highest 

confidence score. 

- Optical Character Recognition (OCR): For each detected license plate, the 

PyTesseract OCR engine is used to extract text from the license plate region in the 

image. 

 

3. Data Layer: Once the license plate text is extracted, it is stored in two formats: 

- CSV Data Storage: The extracted text, along with the corresponding image 

filename, is stored in a CSV file. This file serves as a simple, flat-file database for 

storing the results.  

- SQLite Database: In addition to the CSV storage, the results are also stored in a 

more structured SQLite database. SQLAlchemy, an ORM system for Python, is 

used to manage this SQLite database. The structured database provides efficient 

query capabilities to access past prediction results. 

 

4. Output Presentation: The system then returns the detected license plate 

information back to the user interface. It also saves a copy of the image with the 

detected license plates highlighted by bounding boxes. 
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Figure 2. A screenshot showing the results of the ALPR system. 

Source: The author’s own project.  

 

To sum up, the architecture of the ALPR system is an embodiment of a Machine 

Learning as a Service (MLaaS) application. It presents a pipeline that starts from a 

simple user interface, goes through a robust processing layer comprising image 

processing, object detection, and OCR, and finally delivers the results back to the user, 

while also persisting the data for future reference.  

  

Results and demonstrations of the system 

In this chapter, the focus will be on the outcomes achieved by the ALPR system. The 

chapter aims to showcase the functionality of each system component and how they 

collectively contribute to the system's primary objective: the accurate recognition of 

license plates from images and videos. 

First, in order to launch the system on a local machine, we need to install all the 

dependencies and packages by running the “requirements.txt” file. Once we ensure 

that we have all the packages, go to the folder of the project and run the main Python 

script that is contained in the “app.py” file by running the “python app.py” script on 

the terminal. 
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In case the file is successfully run, it will open a window on your local browser to the 

web page. To test the system, go to the Test Out window of the page and upload an 

image that contains a picture of a vehicle with its number plates. 

As evident from the above image, the system successfully identifies the Region of 

Interest (ROI) containing the license plate of the vehicle, highlights it, and displays 

the model's confidence in its prediction. Additionally, the deciphered text from the 

ROI is displayed beneath the highlighted area. 

In this specific instance, the model operates with a confidence level of 94%. This is a 

commendable achievement, given the inherent challenges in the domain of object 

detection. 

In this specific instance, the algorithm has been able to detect the image, but there is 

some fine-tuning needed to make the model suitable for the needs of the specific set 

of rules, e.g. different variations of number plates in different countries. 

The screenshot demonstrates the real-time capabilities of the model as it successfully 

detects and recognizes number plates from multiple vehicles in motion. This 

impressive performance  

is achieved through the utilization of the YOLO object detection model.  

 
Figure 3. The results are stored in a CSV file that is later imported to an SQLite 

database upon deployment. 

Source: The author’s own project. 

 

Conclusions 

In this article presented an in-depth exploration of an Automatic License Plate 

Recognition system. The project aimed to develop a robust system capable of detecting 

and recognizing license plates from images and videos in real-time. Through the 

implementation of computer vision techniques, deep learning models, and OCR 

technologies, I successfully achieved my objectives and obtained promising results. In 

this concluding chapter, I summarize the key findings, discuss the contributions of the 

project, and suggest potential avenues for future research.  



 
                                                              

                        ISSN: 2776-0979, Volume 5, Issue 6, June - 2024 

61 
 
  

Summary of Findings 

My comprehensive investigation revealed that the ALPR system performed 

exceptionally well in detecting and recognizing license plates across various scenarios. 

The integration of the YOLO object detection model, along with an optimized OCR 

engine, enabled accurate and efficient identification of license plate characters. The 

system demonstrated robustness and reliability, even when dealing with challenging 

environmental conditions, such as variations in lighting, angle, and vehicle speed. 

Furthermore, the real-time capabilities of the system showcased its potential for 

deployment in practical applications, such as traffic management, parking systems 

and law enforcement. 

 

Contributions 

The contributions of this Master’s Diploma Thesis can be summarized as follows. 

1. Development of an ALPR system: I designed and implemented a comprehensive 

ALPR system that combined computer vision techniques, deep learning models, 

and OCR technologies. The system showcased the potential of these components 

in achieving accurate and real-time license plate recognition.  

2. Performance evaluation: I conducted extensive experiments to evaluate the 

performance of the ALPR system. The results demonstrated high accuracy and 

efficiency in license plate detection and character recognition, with promising 

outcomes across diverse scenarios. 

3. Open-Source Implementation: To foster collaboration and facilitate further 

research, I have made the source code and trained models available in a public 

repository. This enables researchers and developers to leverage and build upon 

my work, accelerating advancements in the field of ALPR. 

 

Future Directions 

While this research project has achieved significant milestones in ALPR technology, 

there are several avenues for future exploration and improvement: 

1. Enhanced robustness: Further investigation can focus on improving the 

system’s robustness to challenging environmental conditions, such as adverse 

weather, occlusions, and non-standard license plate formats. 

2. Scalability: Investigating strategies to optimize the system’s performance for 

large-scale deployments and real-time processing on high-resolution video 

streams can expand its potential applications.  

3. Integration with IoT and Cloud Computing: Exploring integration with IoT 

devices and cloud computing infrastructure can enhance the system’s 
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capabilities, enabling seamless communication, data sharing, and distributed 

processing. 

4. Multilingual License Plate Recognition: Extending the system to support the 

recognition of license plates from different countries and languages can broaden 

its applicability and usefulness in diverse international settings. 

 

In conclusion, this article presents a comprehensive exploration of an Automatic 

License Plate Recognition system. Through the integration of computer vision 

techniques, deep learning, and OCR technologies, I have developed a robust and 

efficient system capable of real-time license plate detection and recognition. The 

project’s contributions, performance evaluation, and open-source implementation 

highlight its potential impact on various practical applications. Future research should 

focus on enhancing the system’s robustness, scalability, integration with emerging 

technologies, and multilingual support. By continually advancing ALPR technology, 

we can drive innovation and contribute to the development of smarter transportation 

systems and enhanced public safety. 
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