

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

51

AN AI-BASED AUTOMATIC LICENSE PLATE RECOGNITION SYSTEM

Sardorbek Zokirov

Webster University in Tashkent

Abstract

The rapid progress of Deep Learning has driven advancements in image processing

and computer vision, making artificial neural networks the standard tool for these

tasks. This paper focuses on explaining neural networks, particularly in object

detection models, and aims to build a practical Automatic License Plate Recognition

system. The system's development is driven by the technology's wide applicability in

various fields and its importance in modern infrastructure like road systems. The

study will experiment with building the system and explore potential applications

beyond license plate recognition, such as in autonomous driving. The thesis outlines

goals including developing accurate algorithms for license plate detection and optical

character recognition, integrating them into a real-time system, and evaluating its

performance and applications. The ultimate aim is to create a beneficial automatic

license plate recognition system that contributes to computer vision and inspires

further research in the field.

Introduction.

Automatic License Plate Recognition (ALPR) is a technology that has been gaining

popularity in recent years due to its wide range of applications in law enforcement,

traffic management, toll management and parking systems. ALPR systems use

cameras and image processing algorithms to capture and analyze license plate

information from vehicles in real-time.

The main goal of the article is to develop a practical and useful automatic license plate

recognition system that can benefit society and improve our lives. By achieving the

above goals, I hope to contribute to the field of computer vision and pattern

recognition and inspire further research and development in this area.

Main part

Neural network theory, with roots spanning several decades, finds its inspiration in

the human brain's structure and functionality. The goal is to model intricate

relationships and patterns within data. This chapter navigates the terrain of neural

network theory's history and critical concepts, coupled with an in-depth exploration

of field-shaping models and algorithms.

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

52

These algorithms, employed in machine learning, mirror the structure and operation

of neural clusters in the human brain. In its simplest form, artificial neural networks

tweak neuron interconnections to facilitate learning. Hence, they're able to execute

various tasks such as data pattern recognition and applying learned generalizations.

The training phase involves presenting the network with inputs and corresponding

labels or target values, helping it understand the properties it needs to learn from the

input data [1].

By tweaking neuron interconnections, neural networks achieve impressive data

classification accuracy. They can also apply learned knowledge to new, similar

datasets. A fitting example is object recognition in images from a self-driving car's

camera. Neural networks' recent popularity surge in machine learning is largely due

to their success in visual object recognition. Another strength lies in machine

translation, especially with dynamic or recurrent networks. They take sentence inputs

and output word-by-word translations. Trained on large input sentence sets and their

translations, recurrent networks find use in applications like Google Translate and

have proved efficient at predicting chaotic dynamics. The common factor in these

examples is supervised learning, with networks trained to pair specific labels with

each input.

YOLO Object detection model

The You Only Look Once (YOLO) model is a revolutionary real-time object detection

system that was first proposed in a 2016 paper by Joseph Redmon and his team [12].

Unlike other object detection models, YOLO applies a singular neural network to the

entire image, splitting it into regions, predicting bounding boxes, and probabilities for

each region. Its fast-processing speeds and accuracy make it ideal for various

applications, such as autonomous driving, security systems, and video surveillance.

This chapter provides an in-depth look into the workings of the YOLO object detection

model.

YOLO is built on the foundation of a unique convolutional neural network (CNN)

architecture. The CNN is trained to predict the bounding boxes and class probabilities

of objects in an image. It ingests an image and outputs a set of bounding boxes, each

equipped with a class label and a confidence score. These bounding boxes indicate the

objects' location in the image, while the class label and confidence score specify the

class of the object and the probability of its presence.

The YOLO model comprises two components: the CNN architecture and a post-

processing step. The CNN architecture contains a series of convolutional and max-

pooling layers, followed by a handful of fully connected layers. The convolutional

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

53

layers extract features from the input image, while the max-pooling layers reduce the

feature's spatial resolution, rendering the network robust to minor changes in the

objects' location [13]. The fully connected layers are employed to predict the bounding

boxes and class probabilities of the objects.

Post-processing involves filtering the CNN output to enhance object detection

accuracy. The first step in post-processing is to implement a non-maximum

suppression (NMS) algorithm to remove overlapping bounding boxes that refer to the

same object. The second step involves setting a threshold on the confidence scores of

the bounding boxes, considering only those bounding boxes that exceed a certain

confidence score as valid detections.

Figure 1. YOLO model architecture.

Source: Young, B. (n.d.). Yolov5 network architecture. YOLOV5 network architecture

- Programmer Sought. https://www.programmersought.com/article/12098280279/

(Accessed: 6 April 2023).

The YOLO model is trained using a dataset of images with annotated objects. The

network learns to adjust the layer weights to minimize the difference between the

predicted and actual bounding boxes and class probabilities using a process known as

backpropagation.

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

54

The YOLO model's strength lies in its speed and real-time capabilities. It can process

images at approximately 45 frames per second, making it suitable for real-time

applications such as self-driving cars and security systems [14]. Additionally, YOLO is

well-known for its accuracy and simplicity. However, it does struggle with detecting

small objects or objects in images with complex backgrounds or multiple objects of

the same class.

Putting YOLO into Action in Computer Vision

When YOLO is applied to computer vision tasks, the first step involves dividing the

input image into a grid of S x S cells. Each cell is tasked with the identification of

objects that have their center within its boundaries. For each of these cells, YOLO

predicts B bounding boxes along with corresponding confidence scores. These

bounding boxes contain five elements: x, y, w, h, and confidence. The coordinates (x,

y) determine the box's center relative to the cell boundaries, while w and h denote the

box's width and height [16]. The confidence score reflects the model's belief that the

box contains an object and how accurately it fits that object.

YOLO stands out in computer vision due to its unique single pass through the neural

network architecture. This architecture, which is end-to-end and fully convolutional,

produces the final output using a 1x1 convolutional layer. Unlike other models that

necessitate thousands of proposals to detect objects, YOLO considers the entire image

at testing time, which means its predictions are influenced by the image's global

context.

YOLO's flexibility and speed make it invaluable for real-time detection tasks. By

integrating traditionally separate stages of object detection, YOLO stands as a unified

and efficient replacement for older methods.

However, YOLO is not without its limitations. It tends to falter when dealing with

small objects within groups and objects with unusual aspect ratios or orientations.

These issues mainly arise due to YOLO's coarse spatial discretization and its

constraint of predicting only one class per grid cell.

YOLO implementation often involves the use of pre-trained models and transfer

learning. These models are usually trained on extensive, diverse datasets like

ImageNet or COCO. The Darknet architecture, developed by the same authors,

provides the pre-trained weights for YOLO, simplifying its implementation in

practical scenarios. The advent of deep learning libraries such as TensorFlow and

PyTorch has further eased the adoption of YOLO, as they provide robust APIs and

comprehensive support.

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

55

Computer Vision using OpenCV

OpenCV, short for Open Source Computer Vision Library, is an open-source library

that includes numerous computer vision and machine learning algorithms. It was

designed to offer a shared infrastructure for computer vision applications and speed

up the commercial use of machine perception [17].

OpenCV is frequently used in real-time image processing due to its efficient

implementation in C/C++ and its capability for multi-core processing. The library

offers extensive functionalities for image and video processing, like image/video I/O

utilities, colour space conversion, image filtering, object detection, feature extraction,

stereo vision, camera calibration, and machine learning [17].

When using YOLO for computer vision tasks, OpenCV can be used at various stages.

During pre-processing, OpenCV can handle image normalization, resizing, and

transformation tasks, all of which are critical for preparing the input data for the

YOLO model. It can also augment training data to enhance the model's generalization

capabilities.

In the post-processing stage, OpenCV is instrumental in managing the output from

the YOLO model. For example, it can draw bounding boxes around detected objects

in an image, annotate images with labels, calculate confidence scores, and display or

save the final output images.

Furthermore, OpenCV has a DNN (Deep Neural Network) module that enables

loading and running pre-trained models from popular deep learning frameworks,

including YOLO. This feature amplifies OpenCV's versatility and usability in computer

vision tasks involving object detection.

Convolutional Neural Networks and their practical usage

Convolutional Neural Networks (CNNs) are a category of deep neural networks

devised to handle data with a grid-like topology, like an image composed of a grid of

pixels. CNNs were initially suggested by Yann LeCun and his team in the 1990s [18].

A CNN's architecture is purposefully designed to leverage the 2D structure of an input

image. This is achieved through a mathematical operation known as convolution. A

convolution layers each input data with a set of learnable filters, each generating one

feature map in the output [19]. By using more layers, the network can discern more

complex patterns.

CNNs include an input and an output layer, as well as multiple hidden layers. These

hidden layers typically consist of convolutional layers, RELU layers (i.e., activation

function), pooling layers, fully connected layers, and normalization layers. The

pooling layer lessens the representation's spatial size, thereby reducing the

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

56

parameters and computations in the network and controlling overfitting [20]. The

fully connected layer connects every neuron in one layer to every neuron in another

layer, often used to output predictions.

Beyond image and video recognition, CNNs have numerous practical applications.

They're used in natural language processing (NLP), recommendation systems, and

time series analysis. A specific variant of CNN, the 1D-CNN, has proven successful in

interpreting the temporal aspect of data in areas like speech recognition or natural

language processing [21]. Additionally, CNNs have been effectively applied in medical

image analysis, autonomous vehicles, and other AI fields.

In terms of object detection and the YOLO model, CNNs form the backbone that

extracts features from input images. These features are then used by the YOLO model

to predict class probabilities for each grid cell. The combination of CNNs and the

YOLO framework has resulted in significant enhancements in object detection

performance and speed.

Implementation of ALPR system

The proposed Automatic License Plate Recognition (ALPR) project uses a variety of

tools and libraries, including Python [22], Flask, OpenCV [23], PyTesseract [24], and

YOLO (You Only Look Once) [25], a real-time object detection system. The main goal

of this project is to detect and recognize vehicle license plates from images and videos.

This project can be dissected into several interconnected components, each of which

plays a crucial role in the ALPR system's functionality. Here is an overview of each

component:

● YOLO-based Object Detection (deeplearning.py): The core of the project lies in

the deeplearning.py script. This file contains the necessary code to read and

preprocess images, execute YOLO-based object detection, perform non-

maximum suppression, extract detected regions (in this case, license plates),

and draw bounding boxes with corresponding confidence scores. The YOLO

model used in this project is loaded from an ONNX file.

● Flask-based Web Application (app.py): The app.py file implements a web

application using Flask [26]. The application provides an interface for users to

upload an image, which is then passed to the object detection function from

deeplearning.py. The application then stores the detected text (i.e., the license

plate information) and returns the result back to the user interface.

● Data Persistence (save_results.py, db.py, and preds.csv): The save_results.py

file contains functions for saving prediction results (the recognized license plate

text) to a CSV file. The db.py script utilizes SQLAlchemy, an SQL toolkit and

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

57

Object-Relational Mapping (ORM) system, to create a SQLite [27] database

from the saved CSV file and provide functions for database querying.

● Application Dependencies (requirements.txt): The requirements.txt file lists the

Python libraries required to run the application. It includes Flask for the web

application, numpy for numerical operations, OpenCV for image processing

tasks, Pytesseract for Optical Character Recognition (OCR), and other essential

libraries.

● YOLO Model (best.onnx): This is the pre-trained YOLO model used for object

detection. The ONNX (Open Neural Network Exchange) format allows for

interoperability between different deep learning frameworks, facilitating the

sharing of models.

The project's structure follows a standard format for a machine learning-based

application. It divides the various functionalities into separate scripts, each

responsible for a specific task. This division ensures that the project is modular and

maintainable.

The primary user interaction occurs via the Flask web application. When a user

uploads an image, it is first saved locally. Then, the YOLO model is used to detect

objects (license plates) in the image. Once the objects are detected, the Pytesseract

library is used to recognize and extract text from the license plate regions.

The recognized text and corresponding image filename are then saved to a CSV file,

ensuring a record of predictions is maintained. These results are also stored in an

SQLite database, providing an efficient means to query past predictions.

In essence, this project is a seamless integration of web development, deep learning-

based object detection, and optical character recognition, combined to deliver an

efficient and practical Automatic License Plate Recognition system.

Architecture of the ALPR system

The Automatic License Plate Recognition (ALPR) system exhibits an architecture

characterized by a blend of computer vision, machine learning, and web development

components. Here, we delve deeper into the architectural exploration of the system,

examining how these components interconnect and interact to form a cohesive,

functional ALPR system:

1. Front-end Layer (User interface): The front-end of the system is primarily

web-based interface designed using Flask’s render_template function, which

provides the capability to use HTML templates for the interface. The users interact

with the system through this interface by uploading images containing the vehicles

and their license plates.

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

58

2. Back-end Layer (Web Server and Processing Units): Once the image is

uploaded, it is received at the server-side, implemented in Flask. The server saves

the uploaded image locally and then sends it for processing. It follows a specific

sequence of tasks that form the backbone of the ALPR system:

- Image processing: This is the initial stage in the pipeline, where the input

images are prepared for further processing. This preparation involves converting

the image format to suit the YOLO model’s input requirements.

- Object detection: The processed image is then fed into a pre-trained YOLO

model to detect objects. In this context, the YOLO model is configured to identify

license plates specifically.

- Non-maximum Suppression: To ensure that each object is detected only once,

non-maximum suppression is applied to the detected objects. This step eliminates

multiple bounding boxes for the same object, keeping only the one with the highest

confidence score.

- Optical Character Recognition (OCR): For each detected license plate, the

PyTesseract OCR engine is used to extract text from the license plate region in the

image.

3. Data Layer: Once the license plate text is extracted, it is stored in two formats:

- CSV Data Storage: The extracted text, along with the corresponding image

filename, is stored in a CSV file. This file serves as a simple, flat-file database for

storing the results.

- SQLite Database: In addition to the CSV storage, the results are also stored in a

more structured SQLite database. SQLAlchemy, an ORM system for Python, is

used to manage this SQLite database. The structured database provides efficient

query capabilities to access past prediction results.

4. Output Presentation: The system then returns the detected license plate

information back to the user interface. It also saves a copy of the image with the

detected license plates highlighted by bounding boxes.

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

59

Figure 2. A screenshot showing the results of the ALPR system.

Source: The author’s own project.

To sum up, the architecture of the ALPR system is an embodiment of a Machine

Learning as a Service (MLaaS) application. It presents a pipeline that starts from a

simple user interface, goes through a robust processing layer comprising image

processing, object detection, and OCR, and finally delivers the results back to the user,

while also persisting the data for future reference.

Results and demonstrations of the system

In this chapter, the focus will be on the outcomes achieved by the ALPR system. The

chapter aims to showcase the functionality of each system component and how they

collectively contribute to the system's primary objective: the accurate recognition of

license plates from images and videos.

First, in order to launch the system on a local machine, we need to install all the

dependencies and packages by running the “requirements.txt” file. Once we ensure

that we have all the packages, go to the folder of the project and run the main Python

script that is contained in the “app.py” file by running the “python app.py” script on

the terminal.

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

60

In case the file is successfully run, it will open a window on your local browser to the

web page. To test the system, go to the Test Out window of the page and upload an

image that contains a picture of a vehicle with its number plates.

As evident from the above image, the system successfully identifies the Region of

Interest (ROI) containing the license plate of the vehicle, highlights it, and displays

the model's confidence in its prediction. Additionally, the deciphered text from the

ROI is displayed beneath the highlighted area.

In this specific instance, the model operates with a confidence level of 94%. This is a

commendable achievement, given the inherent challenges in the domain of object

detection.

In this specific instance, the algorithm has been able to detect the image, but there is

some fine-tuning needed to make the model suitable for the needs of the specific set

of rules, e.g. different variations of number plates in different countries.

The screenshot demonstrates the real-time capabilities of the model as it successfully

detects and recognizes number plates from multiple vehicles in motion. This

impressive performance

is achieved through the utilization of the YOLO object detection model.

Figure 3. The results are stored in a CSV file that is later imported to an SQLite

database upon deployment.

Source: The author’s own project.

Conclusions

In this article presented an in-depth exploration of an Automatic License Plate

Recognition system. The project aimed to develop a robust system capable of detecting

and recognizing license plates from images and videos in real-time. Through the

implementation of computer vision techniques, deep learning models, and OCR

technologies, I successfully achieved my objectives and obtained promising results. In

this concluding chapter, I summarize the key findings, discuss the contributions of the

project, and suggest potential avenues for future research.

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

61

Summary of Findings

My comprehensive investigation revealed that the ALPR system performed

exceptionally well in detecting and recognizing license plates across various scenarios.

The integration of the YOLO object detection model, along with an optimized OCR

engine, enabled accurate and efficient identification of license plate characters. The

system demonstrated robustness and reliability, even when dealing with challenging

environmental conditions, such as variations in lighting, angle, and vehicle speed.

Furthermore, the real-time capabilities of the system showcased its potential for

deployment in practical applications, such as traffic management, parking systems

and law enforcement.

Contributions

The contributions of this Master’s Diploma Thesis can be summarized as follows.

1. Development of an ALPR system: I designed and implemented a comprehensive

ALPR system that combined computer vision techniques, deep learning models,

and OCR technologies. The system showcased the potential of these components

in achieving accurate and real-time license plate recognition.

2. Performance evaluation: I conducted extensive experiments to evaluate the

performance of the ALPR system. The results demonstrated high accuracy and

efficiency in license plate detection and character recognition, with promising

outcomes across diverse scenarios.

3. Open-Source Implementation: To foster collaboration and facilitate further

research, I have made the source code and trained models available in a public

repository. This enables researchers and developers to leverage and build upon

my work, accelerating advancements in the field of ALPR.

Future Directions

While this research project has achieved significant milestones in ALPR technology,

there are several avenues for future exploration and improvement:

1. Enhanced robustness: Further investigation can focus on improving the

system’s robustness to challenging environmental conditions, such as adverse

weather, occlusions, and non-standard license plate formats.

2. Scalability: Investigating strategies to optimize the system’s performance for

large-scale deployments and real-time processing on high-resolution video

streams can expand its potential applications.

3. Integration with IoT and Cloud Computing: Exploring integration with IoT

devices and cloud computing infrastructure can enhance the system’s

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

62

capabilities, enabling seamless communication, data sharing, and distributed

processing.

4. Multilingual License Plate Recognition: Extending the system to support the

recognition of license plates from different countries and languages can broaden

its applicability and usefulness in diverse international settings.

In conclusion, this article presents a comprehensive exploration of an Automatic

License Plate Recognition system. Through the integration of computer vision

techniques, deep learning, and OCR technologies, I have developed a robust and

efficient system capable of real-time license plate detection and recognition. The

project’s contributions, performance evaluation, and open-source implementation

highlight its potential impact on various practical applications. Future research should

focus on enhancing the system’s robustness, scalability, integration with emerging

technologies, and multilingual support. By continually advancing ALPR technology,

we can drive innovation and contribute to the development of smarter transportation

systems and enhanced public safety.

References

1. Haykin, S. S., & Haykin, S. S. (2009). Neural networks and learning machines.

Pearson Education.

2. Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural

Computation, 9(8), 1735-1780.

3. Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage

and organization in the brain. Psychological review, 65 6, 386-408 .

4. Cybenko, G. (1989). Approximation by Superpositions of a Sigmoidal Function.

Mathematics of Control, Signals, and Systems, 2(4), 303-314.

5. Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks

are universal approximators. Neural Networks, 2(5), 359-366.

6. Forsyth, D. A., & Ponce, J. (2012). Computer Vision: A Modern Approach. Prentice

Hall.

7.Fukushima, K. (1980). Neocognitron: A Self-organizing Neural Network Model for

a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biological

Cybernetics, 36(4), 193-202.

8. Long, J., Shelhamer, E., & Darrell, T. (2015). Fully Convolutional Networks for

Semantic Segmentation. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) (pp. 3431-3440).

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

63

9. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet Classification with

Deep Convolutional Neural Networks. In Advances in Neural Information Processing

Systems (pp. 1097-1105).

10. Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). BERT: Pre-training of

Deep Bidirectional Transformers for Language Understanding. In Proceedings of the

2019 Conference of the North American Chapter of the Association for Computational

Linguistics: Human Language Technologies (Volume 1, Long Papers) (pp. 4171-4186).

11. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019).

Language Models are Unsupervised Multitask Learners. OpenAI Blog.

12. van den Oord, A., Dieleman, S., Zen, H., Simonyan, K., Vinyals, O., Graves, A., ...

& Kavukcuoglu, K. (2016). Wavenet: A generative model for raw audio. arXiv preprint

arXiv:1609.03499.

13. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once:

Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (pp. 779-788).

14. Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. arXiv

preprint arXiv:1804.02767.

15. Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (pp. 6517-6525).

16. Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR) (pp. 6517-6525).

17. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once:

Unified, Real-Time Object Detection. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR) (pp. 779-788).

18. Bradski, G. (2000). The OpenCV Library. Dr. Dobb's Journal of Software Tools.

19. Bradski, G., & Kaehler, A. (2008). Learning OpenCV: Computer Vision with the

OpenCV Library. O'Reilly Media.

20. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.

21. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436-

444.

22. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

23. Kim, Y. (2014). Convolutional Neural Networks for Sentence Classification. In

Proceedings of the 2014 Conference on Empirical Methods in Natural Language

Processing (EMNLP) (pp. 1746-1751).

 ISSN: 2776-0979, Volume 5, Issue 6, June - 2024

64

24. Van Rossum, G. (1995). Python Tutorial. Technical Report CS-R9526, Centrum

voor Wiskunde en Informatica (CWI).

25. OpenCV (2021). Welcome to OpenCV-Python Tutorials’s documentation!

Available at: https://docs.opencv.org/4.5.2/d6/d00/tutorial_py_root.html

(Accessed: 6 April 2023).

26. PyTesseract (2021). pytesseract/pytesseract: An Optical Character Recognition

(OCR) tool for python. That is a wrapper for Google Tesseract-OCR. Available at:

https://github.com/madmaze/pytesseract (Accessed: 6 April 2023).

27. Redmon, J. and Farhadi, A. (2016). You only look once: Unified, real-time object

detection. In Proceedings of the IEEE conference on computer vision and pattern

recognition (pp. 779-788).

28. Flask (2021). Welcome to Flask. Available at:

https://flask.palletsprojects.com/en/2.1.x/ (Accessed: 5 April 2023).

29. SQLAlchemy (2021). SQLAlchemy - The Database Toolkit for Python. Available

at: https://www.sqlalchemy.org/ (Accessed: 5 April 2023).

30. Fielding, R. T., Gettys, J., Mogul, J. C., Frystyk, H., Masinter, L., Leach, P. J., &

Berners-Lee, T. (1999). Hypertext Transfer Protocol -- HTTP/1.1. IETF RFC 2616.

31. Historia del perceptron timeline. Timetoast timelines. (n.d.).

https://www.timetoast.com/timelines/historia-del-perceptron (Accessed: 2

February 2023).

32. Saha, S. (2022, November 16). A comprehensive guide to Convolutional Neural

Networks - the eli5 way. Medium. https://towardsdatascience.com/a-comprehensive-

guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53 (Accessed: 2

February 2023).

33. Fig. 1. Artificial Neural Network Architecture. - researchgate. (n.d.).

https://www.researchgate.net/figure/Artificial-neural-network-

architecture_fig1_346012838 (Accessed: 4 February 2023).

34. Young, B. (n.d.). Yolov5 network architecture. YOLOV5 network architecture -

Programmer Sought. https://www.programmersought.com/article/12098280279/

(Accessed: 6 April 2023).

