

QUANTITATIVE ACCOUNTING AND QUALITATIVE CHARACTERISTICS OF PHYTOPLANKTON IN SURFACE RESERVOIR OF THE BUKHARA REGION

Jumaeva Sh. B.

Bukhara State Medical Institute, Uzbekistan

Annotation

The aim was to study the main qualitative and quantitative characteristics of phytoplankton in the studied areas of surface water bodies of the Bukhara region. It was found that in the studied water bodies (Tudakul lakes and Kuyumazar reservoir), Bacillariophyta (34 species), Chlorophyta (20 species), Cyanophyta (15 species), less often Dinophyta (5 species), Englenophyta (1 species) were found. The highest total phytoplankton abundance in water samples from both reservoirs was Cyanophyta, and the highest phytoplankton biomass was recorded in Bacillariophyta and Chlorophyta. At the same time, Englenophyta and Dinophyta were not found in the waters of the Kuyumazar reservoir. In the phytoplankton samples from Lake Tudakul, planktonic freshwater-brackish-water forms b-mesosaprobic predominated; brackish-water b- and b- and α -mesosaprobic species of algae prevailed.

Keywords: hydrobiology, phytoplankton, surface water bodies, total abundance and biomass of phytoplankton.

Introduction

Hydrobiots of various water bodies take part in the circulation of matter and energy, in the accumulation of bottom sediments, and are also of great medical and social importance due to the use of numerous surface water bodies for household and drinking and cultural and domestic purposes [1-3]. For this reason, the definition of phytoplankton [9,10,11]. is mandatory according to O'zDSt 950-2011 "Drinking water. Hygienic requirements and quality control" (GOST) and O'zDSt 951-2011 "Sources of centralized utility and drinking water supply. Hygienic, technical requirements and selection rules" (GOST) [1-30].

Constant monitoring, assessment of the variability of the microbial and chemical composition of water in water bodies is of great importance [6-21].

Changes in the chemical, mineral composition of water affect the microbial composition of water in reservoirs. [7-15].

The purpose of this study is to study and evaluate the main qualitative and quantitative characteristics of phytoplankton in the studied areas of surface water bodies in the Bukhara region.

Website:

<https://wos.academiascience.org>

Materials and methods. The composition, abundance, distribution of phytoplankton in the surface (open) water bodies of the region we study (Bukhara region of the Republic of Uzbekistan) are due to unequal hydrological, hydrochemical conditions and anthropogenic impact. In biological studies, the bathometric method was used. Phytoplankton was collected with a plankton net of silk gauze №76. For "soft" fixation of phytoplankton samples, Lugol's solution was used (up to a slightly yellow color) followed by the, addition of 40% formalin (10 ml of 40% formalin for 0.5 l of the sample.). It was taken into account that high concentrations of this fixative cause deformation of algae and a change in the color of their pigment [8-22].

Phytoplankton sampling was carried out according to generally accepted algological methods [5-8], and determinants were used to identify the species composition of microalgae [10-11].

The sample taken in a polyethylene bottle was fixed with 40% formalin and Lugol's solution; the sample number, date, water body, by whom and in the presence of whom the sample was taken were indicated on the label. Standard water sampling horizons were: 0 (surface); 0.5; 1.0; 2.5; 5m [13-24].

Under conditions, the sedimentary method was used for phytoplankton samples. In laboratory conditions, the sedimentation method (sedimentation) was used to concentrate the samples, then the filtrate was slowly sucked off by a siphon through a double layer of plankton net from silk gauze No. 76, which contributed to the preservation of the fine structures of algae[12-29].

The compaction of the taken sample was carried out in 2 stages: from 0.5 l (500 ml) to 0.1 l (100 ml). Then, after secondary settling (no more than 5 days), the solution was sucked off again. Poor samples (winter-spring) were brought to a volume of 10 ml (usually up to 20 ml), very rich samples (summer during the "blooming" of blue-green) - up to 50 ml, sometimes even up to 100 ml) [19-25].

Results of the received researches and their discussion.

1. During the reconnaissance trip, phytoplankton samples were taken, in which 75 species, varieties and forms of algae were found: diatoms(Bacillariophyta) - 34 species; green (Chlorophyta) - 20 species; blue-green(Cyanophyta) - 15 species; dinophyta (Dinophyta) - 5 species; euglenoids(Euglenophyta) - 1 species [17-23].

The obtained hydrobiological information of the studied reservoirs of the Bukhara region testified that anthropogenic factors, especially pollution, cause changes in the composition, structure and ecological state of aquatic biocenoses of various depths,

expressed in a change in the dominant complexes of organisms, simplification of the ecological structure, the appearance of highly saprobic species.

2. It was revealed that the highest total abundance of phytoplankton in water samples of both reservoirs was Cyanophyta (6500.00×10^3 cells/l and 706.25×10^3 cells/l, respectively), and the highest phytoplankton biomass was noted in Bacillariophyta (187.800 mg/l) and Chlorophyta (188.400 mg/l). At the same time, Englenophyta and Dinophyta were not found in water samples from the Kuyumazar reservoir [16-29].
3. It has been proved that planktonic freshwater-brackish-water b-mesosaprobic forms prevailed in phytoplankton samples of Lake Tudakul; brackish-water b- and b- and a-mesosaprobic algae species prevailed [14-27].
4. The increased abundance of phytoplankton was created mainly by representatives of colonial and filamentous blue-green algae of the family Oscillatoriaceae, and widespread diatoms Synedra, Fragilaria, Navicula, Nitzschia and green desmids, protococcal algae [20-28].

REFERENCES

1. Жумаева, Ш. Б. (2022). КОЛИЧЕСТВЕННЫЙ УЧЕТ И КАЧЕСТВЕННАЯ ХАРАКТЕРИСТИКА ФИТОПЛАНКТОНА В ВОДОЕМАХ БУХАРСКОЙ ОБЛАСТИ. *Scientific progress*, 3(1), 1132-1136.
2. Mustafayeva, M. I., & Khakimov, K. Z. (2021). CHANGE IN QUALITATIVE AND QUANTITATIVE COMPOSITION OF ALGAE AFTER ALGOLIZATION. *Энigma*, (33), 244-245.
3. Худайкулова, Н. И. (2022). ХИМИЧЕСКИЕ И ФИЗИЧЕСКИЕ ФАКТОРЫ И ИХ ВЛИЯНИЕ НА ИММУННУЮ СИСТЕМУ ОРГАНИЗМА. *Scientific progress*, 3(1), 891-895.
4. Aminjonova, C. A. (2021). Methodology and problems of teaching the subject "Biology" in medical universities. *Смоленский медицинский альманах*, (1), 15-18.
5. Худайкулова, Н. И., & Жумаева, Ш. Б. (2020). О стимуляции иммунитета на гиалуронидазу-фактор патогенности паразитов. In Университетская наука: взгляд в будущее (pp. 106-108).
6. KHUDOYKULOVA N.I. (2022, February). CONGENITAL ANOMALIES, ANALYSIS AND DEVELOPMENT IN THE NAVOI REGION. *INTERNATIONAL JOURNAL OF PHILOSOPHICAL STUDIES AND SOCIAL SCIENCES* 2(2) (pp.46-49).

7. Худойкулова, Н. И. (2018). Пути воспитания толерантности у молодежи. Наука, техника и образование, (11 (52)), 98-100.
8. Худойкулова, Н. И. (2022). АНАЛИЗ И РАСПРОСТРАНЕНИЕ ВРОЖДЕННЫХ АНОМАЛИЙ В БУХАРСКОЙ ОБЛАСТИ. *Scientific progress*, 3(1), 954-957.
9. Ismailovna, M. M. (2020). Ecological and Sanitary Assessment of Biological ponds based on the species composition of algae. *European Journal of Molecular & Clinical Medicine*, 7(03), 2020.
10. Аминжонова, Ч. А., & Мустафаева, М. И. (2017). Биоэкологическая Характеристика Водорослей Биологических Прудов г. Бухары. In Экологические проблемы промышленных городов (pp. 387-389).
11. Nazarova, F. I. (2022). ABU ALI IBN SINONING SOG 'LOM TURMUSH TARZINI SHAKILANIRISHI HAQIDA. *Scientific progress*, 3(1), 1137-1142.
12. Назарова, Ф. И. (2022). БУХОРО ВИЛОЯТИ ШАРОИТИДА ИНГИЧКА ТОЛАЛИҒУЗА НАВЛАРИНИ ЯРАТИШ-ДАВР ТАЛАБИ. БАРҚАРОРЛИК ВА ЕТАКЧИ ТАДҚИҚОТЛАР ОНЛАЙН ИЛМИЙ ЖУРНАЛИ, 2(2), 92-94.
13. Назаров, А. И. (2022). АУТИЗМ КАСАЛЛИКИНИ ЭРТА АНИҚЛАШДА ВА ДАВОЛАШДА ДАВО ЧОРЛАРИНИ ИШЛАБ ЧИҚАРИШ ВА ДАВО САМАРАДОРЛИГИНИ ОШИРИШ. *Scientific progress*, 3(1), 1143-1152.
14. Мустафаева, М. И., Лаханова, К. М., Кедельбаев, Б. Ш., Изтлеуов, Г. М., Абдуова, А. А., & Кенжалиева, Г. Д. (2020). Экологические аспекты выращивание хлопка для текстильной промышленности. Известия высших учебных заведений. Технология текстильной промышленности, (4), 165-169.
15. Мустафаева, М. И., & Файзиева, Ф. А. (2016). ПРЕОБЛАДАЮЩИЕ ВИДЫ ВОДОРОСЛЕЙ БИОЛОГИЧЕСКИХ ПРУДОВ ОЧИСТНЫХ СООРУЖЕНИЙ. Национальная ассоциация ученых, (4-1 (20)), 100-101.
16. Nazarov, A. I. (2022). ATROF-MUHITNING INSON SALOMATLIGIGA TA'SIRI. *Scientific progress*, 3(1), 881-885.
17. Nazarov, A. (2021). Challenges to Uzbekistan's secure and stable political development in the context of globalization. *Journal on International Social Science*, 1(1), 26-31.
18. Nazarov, A. (2021). Challenges to Uzbekistan's secure and stable political development in the context of globalization. *Journal on International Social Science*, 1(1), 26-31.
19. Аминжонова, Ч. А., & Мавлянова, Д. А. (2020). Методика преподавания предмета "биология" в системе высшего медицинского образования. In

методологические и организационные подходы в психологии и педагогике (pp. 8-11).

20. Akmalovna, A. C., & Olimovna, A. G. (2020). Methodology and problems of teaching the subject “Biology” in medical universities and secondary educational schools. Eurasian Medical Journal, (2), 6-8.
21. Mustafayeva, M. I., & Khakimova, Z. Z. (2019). The study of the ecology of the algae of sewage as biotechnological disciplines. In International Conference EUROPE, SCIENCE AND WE ISBN (pp. 978-80).
22. Aminjonova, C. A. (2022). SOG'LOM ONA VA BOLA-BAXTLI KELAJAK ASOSI. Scientific progress, 3(1), 874-880.
23. Мустафаева, М. И., & Хакимова, З. З. (2020). Развитие фитопланктона в зависимости от сезона года в прудах очистительных сооружений. ЖУРНАЛ АГРО ПРОЦЕССИНГ, 2(6).
24. Мустафаева, М. И. (2018). ЭКОЛОГИЧЕСКАЯ ЭФФЕКТИВНОСТЬ АЛЬГОЛИЗАЦИИ БИОПРУДОВ. In Человек, экология, и культура (pp. 275-277).
25. Мустафаева, М. И. (2017). ОЧИСТКА СТОЧНЫХ ВОД ПРИ ПОМОЩИ АЛЬГОЛИЗАЦИИ ВОДОРОСЛЕЙ. In Экологические проблемы промышленных городов (pp. 459-462).
26. AMINJONOVA, C. (2021). PROBLEMS AND METHODS OF TEACHING THE SUBJECT “BIOLOGY”. ЦЕНТР НАУЧНЫХ ПУБЛИКАЦИЙ (buxdu. uz), 1(1).
27. Kholliyev, A., Nazarova, F., & Norboyeva, N. (2021). Cotton resistance indicators in the conditions of water deficiency. Збірник наукових праць SCIENTIA.
28. Nazarova, F. I. R. U. Z. A. (2021). The use of phenological observations in the determination of the main phases of the development of thin-fiber goose varieties in the conditions of bukhara region. Theoretical & applied science Учредители: Теоретическая и прикладная наука, (9), 523-526.
29. Akmalovna, A. C. (2022). Characteristics and Advantages of Soybean Benefits in Every way. Journal of Ethics and Diversity in International Communication, 1(8), 67-69.
30. Nazarova, F., & Hudaikulova, N. (2019). Healthy generation-the basis of a healthy family. Scientific Bulletin of Namangan State University, 1(7), 69-73.
31. Nazarova, F. (2022). QARIDOSHLAR ORASIDAGI OFAT. Scientific progress, 3(1), 663-669.

