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Abstract 

In the paper considers the canonical representation of a finite real factor and its 

commutant. The relation between the canonical representation and its commutants 

is given. 
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Introduction 

In 1930's von Neumann and Murray introduced the notion of the coupling constant 

for finite factors (see [11-13]). In 1983, V. Jones suggested a new approach to this 

notion, defined the notion of the index for type II1 factors, and proved a surprising 

theorem on values of the index for subfactors (see [4]). He also introduced a very 

important technique in the proof of this theorem: the towers of algebras. Since then 

this theory has become a focus of many fields in mathematics and physics ([5]). In 

[6], H. Kosaki extended the notion of the index to an arbitrary (normal faithful) 

expectation from a factor onto a subfactor. While Jones' definition of the index is 

based on the coupling constant, Kosaki's definition of the index of an expectation 

relies on the notion of spatial derivatives due to A. Connes [2] as well as on the theory 

of operator-valued weights due to U. Haagerup [3]. In [6,7] it was shown that many 

fundamental properties of the Jones' index in the type II1 case can be extended to the 

general setting. At present the theory of index thanks to works by V. Jones, P. Loi, R. 

Longo, H. Kosaki and other mathematicians is deeply developed and has many 

applications in the theory of operator algebras and physics (see also [9,10]). 

Unlike to the complex case, for real factors the notion of the coupling constant 

(therefore the notion of the index as well) has not been investigated. In the present 
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paper the notions of the real coupling constant and the index for finite real factors are 

introduced and investigated. The main tool in our approach is the reduction of real 

 

Preliminaries 

Let B(H) be the algebra of all bounded linear operators on a complex Hilbert space H. 

A weakly closed -subalgebra 𝔄 containing the identity operator II B(H) is called a W∗-

algebra. A real  ∗-subalgebra ℜ ⊂ B(H) is called a real W∗-algebra if it is closed in the 

weak operator topology and ℜ ∩ iℜ = {0}. A real W-algebra ℜ is called a real factor if 

its center Z(ℜ) consists of the elements {λ𝟏, λ ∈ ℝ}. We say that a real W∗-algebra ℜ is 

of the type Ifin, I∞, II1, II∞, or IIIλ, (0 ≤ λ ≤ 1) if the enveloping W∗-algebra 𝔄(ℜ) has 

the corresponding type in the ordinary classification of W ∗-algebras. A linear 

mapping α of an algebra into itself with α(x∗) = α(x)∗ is called an  ∗-automorphism if 

α(xy) = α(x)α(y); it is called an involutive  ∗-antiautomorphism if α(xy) = α(y)α(x) 

and α2(x) = x. If α is an involutive  ∗-antiautomorphism of a W*-algebra M, we denote 

by (M, α) the real W*-algebra generated by α, i.e. (M, α) = {x ∈ M: α(x) = x∗}. 

Conversely, every real W∗-algebra ℜ is of the form (M, α), where M is the complex 

envelope of ℜ and α is an involutive  ∗-antiautomorphism of M (see [1,5,14] ). 

Therefore we shall identify from now on the real von Neumann algebra ℜ with the 

pair (M, α) 

 

Canonical Representation 

Let M(⊂ B(H)) be a finite factor and let τ be the unique faithful normal tracial state of 

M. If α is an involutive *-antiautomorphism of M, then it is clear that τ is automatically 

α-invariant. Denote by L2(M) the completion of M with respect to the norm ∥ x ∥2=

τ(x∗x)1/2. Similarly by L2(M, α) we denote the completion of the real factor (M, α). 

Then it is obvious that the Hilbert space L2(M) and the algebra B(L2(M)) of all 

bounded linear operators on it are the complexifications of the real Hilbert space 

L2(M, α) and of Br(L2(M, α)), respectively, where Br(L2(M, α)) is the algebra of all 

bounded linear operators on the real Hilbert space L2(M, α). Moreover, it is easy to 

show that the Hilbert spaces L2(M, α) and L2(M) are separable. 

For each x ∈ M, set λ(x)y = xy, for all y ∈ M. Clearly, ∥ λ(x)y ∥2≤∥ x ∥∥ y ∥2. Thus λ can 

be uniquely extended to a bounded linear operator on L2(M), still denoted by λ(x). 

Then we obtain a faithful W∗-representation (λ, L2(M)) of M. In a similar way, taking 

the map λr defined as λr(x)y = xy (for all x, y ∈ (M, α) ) we obtain a faithful real *-

representation (λr, L2(M, α)) of (M, α). 
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Theorem 1  

The map β: λ(M) → λ(M) defined as β(λx) = λα(x) is an involutive *-antiautomorphism 

of λ(M). Moreover, β and α are also related in the following way: (M, α)β = λr(M, α), 

where (M, α)β = {λx ∈ λ(M): β(λx) = λx
∗} is the real W∗-algebra, generated by β, i.e. 

(M, α)β = (λ(M), β). 

 

Proof 

The first part of the assertion is trivial. Further, let λx ∈ (M, α)β. Since β(λx) = λx
∗ , then 

λα(x) = λx∗. Hence α(x) = x∗, i.e. x ∈ (M, α). Then from 

λx ∈ λ(M) ⊂ B(L2(M)) = Br(L2(M, α)) + iBr(L2(M, α)) 

we have (M, α)β ⊂ Br(L2(M, α)). Hence (M, α)β ⊂ λr(M, α), since λr(M, α) = {λx
r ∈

Br(L2(M, α)): for α(x) = x∗ and α(y) = y∗, λx
r (y): = xy}. 

Now let λx
r ∈ λr(M, α). Then α(x) = x∗ and λx

r ∈ λr(M, α) ⊂ λ(M). Hence β(λx
r) = λα(x)

r =

λx∗
r = (λx

r)∗, therefore λx
r ∈ (M, α)β. 

 

Corollary 1 

 λr(M, α) is a real W-algebra, and λ(M) is the complexification of λr(M, α), i.e. 

λr(M, α) + iλr(M, α) = λ(M). Moreover, {λr, L2(M, α)} is a faithful real W∗-

representation of (M, α). 

This representation will be called the canonical W∗-representation of (M, α). 

 

Commutant of The Canonical Representation 

Since ∥ x ∥2= ∥x∗∥2 for all x ∈ M, the map J: x → x∗ can be uniquely extended to a 

conjugate linear isometry on L2(M), still denoted by J. From the theory of W* algebras 

it is well-known that λ(M)′ = Jλ(M)J and λ(M) = Jλ(M)′J. Similarly, to Theorem 1 and 

Corollary 1 we have the following assertion. 

 

Theorem 2 

The map β′: λ(M)′ → λ(M)′ defined as β′(⋅) = Jβ(J ⋅ J)J, is an involutive  ∗-

antiautomorphism of λ(M)′. The set λr(M, α)′ = {λx′ ∈ λ(M)′: β′(λx′) = λx′
∗ } is a real 

W∗-algebra, and λ(M)′ is the complexification of λr(M, α)′, i.e. λr(M, α)′ + iλr(M, α)′ =

λ(M)′. 

We have the following connection between λr(M, α) and λr(M, α)′. 

 

 

Theorem 3 
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 λr(M, α)′ = Jλr(M, α)J. 

 

Proof  

Since λx ∈ λr(M, α) implies that JλxJ ∈ Jλr(M, α)J and β(λx) = λx
∗ , we have 

β′(JλxJ) = Jβ(JJλxJJ)J = Jβ(λx)J = Jλx
∗J = (JλxJ)∗. 

Hence JλxJ ∈ λr(M, α)′, i.e. Jλr(M, α)J ⊂ λr(M, α)′. Conversely, let λx′ ∈ λr(M, α)′ ⊂

λ(M)′ = Jλ(M)J. Then λx′ = JλyJ, for some λy ∈ λ(M). Since β(λx′) = λx′
∗ , we have 

β′(JλyJ) = Jλy
∗ J, i.e. Jβ(JJλyJJ)J = Jλy

∗ J. Hence J2β(λy)J2 = J2λy
∗ J2, i.e. β(λy) = λy

∗  

'Therefore λy ∈ λr(M, α). Thus we obtain λx′ = JλyJ = Jλr(M, α)J, and therefore 

λr(M, α)′ ⊂ Jλr(M, α)J 

 

Theorem 4  

The real W∗-algebra λr(M, α)′ is the commutant of λr(M, α) in the algebra Br(L2(M, α)), 

i.e. λr(M, α)′ = {λx ∈ Br(L2(M, α)): λxλy = λyλx, ∀λy ∈ λr(M, α)} 

 

Proof 

Similarly to the proof of Theorem 1 for β′(λx) = λx
∗  we have λx ∈ Br(L2(M, α)). 

Therefore λr(M, α)′ ⊂ Br(L2(M, α)). On the other hand for any λx ∈ λr(M, α)′ ⊂ λ(M)′ 

and λy ∈ λr(M, α) ⊂ λ(M), we have λxλy = λyλx. 

 

Main Results 

Theorem 5  

Let M1 ⊂ B(H1) and M2 ⊂ B(H2) be two W∗-algebras and let αi be an involutive  ∗-

antiautomorphism of Mi, i = 1,2. If Φ: M1 → M2 is a normal *-homomorphism with Φ ∘

α1 = α2 ∘ Φ, then 

Φ = Φ3 ∘ Φ2 ∘ Φ1, 

where 

1) Φ1 is a * homomorphism from M1 onto M1 ⊗‾ ℂ𝟏L with Φ1 ∘ α1 = α̃1 ∘ Φ1 defined as 

Φ(a) = a ⊗ 𝟏L, where 𝟏L is the identity operator on an appropriate Hilbert space L 

and α1̃ = α1 ⊗ id; 

2) Φ2 is a  ∗-homomorphism from M1 ⊗‾ ℂ𝐈L onto (M1 ⊗‾ ℂ𝟏L)p′ with Φ2 ∘ α̃1 = α‾1 ∘

Φ2 defined as Φ2(a ⊗ 𝟏L) = (a ⊗ 𝟏L)p′, where p′ is a projection from (M1 ⊗‾ ℂ𝟏L)
′
 

with α1̃
′(p′) = p′  and α1̃

′ = J1α1̃(J1(. )J1)J1 ⊗ id,  α‾1(⋅ p′) = α1̃(⋅)p′; 

3) Φ3 is a  ∗-isomorphism from (M1 ⊗‾ ℂ𝟏L)p′ to M2 with Φ3 ∘ α̃1 = α2 ∘ Φ3.  

Proof 
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First we assume that (M) H2
r  is a real Hilbert space and 

M2η̅̅ ̅̅ ̅̅ = (M2, α2)η̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ + i(M2, α2)η̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = H2
r + iH2

r = H2, 

hence η is a cyclic vector of M2. Since Φ ∘ α1 = α2 ∘ Φ, for all a ∈ (M1, α1) we have 

α2(Φ(a)) = Φ(α1(a)) = Φ(a∗) = Φ(a)∗, i.e. Φ(a) ∈ (M2, α2). Hence Φ((M1, α1)) ⊂

(M2, α2). Define a functional φ by 

φ(a) = ⟨Φ(a)η, η⟩,  a ∈ (M1, α1). 

Obviously, φ is a normal positive functional on (M1, α1). We can extend φ by linearity 

to a functional on M1 (still denoted by φ ) such that 

φ(a + ib) = φ(a) + iφ(b),  a, b ∈ (M1, α1), 

which clearly also is a normal positive functional. Let H1
r be a real Hilbert space with 

H1
r + iH1

r = H1 such that (M1, α1) ⊂ B(H1
r). By [8,4.2.1] there is a sequence (ξn) ⊂ H1

r 

with ∑n  ∥∥ξn∥∥
2 < ∞ such that φ(a) = ∑n   < aξn, ξn >, for all a ∈ (M1, α1). Set Lr = ℓ2

r =

{(xn) ⊂ ℝ: ∑n  xn
2 < ∞}, L = Lr + iLr, ξ = (ξn) ⊂ H1

r ⊗ Lr and Φ1(a) = a ⊗ 𝟏L for all a ∈

M1. Then Φ1 is a map from M1 to M1 ⊗‾ ℂ𝟏L and 

(Φ1 ∘ α1)(a)  = Φ1(α1(a)) = α1(a) ⊗ 𝟏L = (α1 ⊗ id)(a ⊗ 𝟏L)

 = α1̃(Φ1(a)) = (α1̃ ∘ Φ1)(a)
 

i.e. Φ1 ∘ α1 = α1̃ ∘ Φ1. Moreover, for all a ∈ (M1, α1) we have 

⟨Φ1(a)ξ, ξ⟩ = ⟨(a ⊗ 𝟏Lr
)ξ, ξ⟩ = ∑  

n

⟨aξn, ξn⟩ = φ(a) 

Let p′ be the projection from H1
r ⊗ Lr to Φ1((M1, α1))ξ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ . Then for all x = a ⊗ 𝟏Lr

∈ 

((M1, α1) ⊗‾ ℝ𝟏Lr
) we have 

(p′x)ξ  = p′ ((a ⊗ 𝟏Lr
)ξ) = p′(Φ1(a)ξ) = Φ1(a)ξ

 = (a ⊗ 𝟏Lr
)ξ = xξ = x ((𝟏 ⊗ 𝟏Lr

)ξ) = x(Φ1(𝟏)ξ)

 = x(p′(Φ1(𝟏)ξ)) = x(p′(ξ)) = (xp′)ξ

 

Similarly, for all γ ∈ H1
r ⊗ Lr with γ ≠ ξ we also obtain 

(p′x)γ  = p′(Φ1(a)γ) = θ = x(θ) = x(p′(Φ1(𝟏)γ))

 = xp′ ((𝟏 ⊗ 𝟏Lr
)γ) = xp′(γ)

 

Therefore p′x = xp′, i.e. p′ ∈ ((M1, α1) ⊗‾ ℝ𝟏Lr
)

′
. Hence p′ ∈ (M1 ⊗‾ ℂ𝟏L)

′
 and for 

α1̃
′ = J1α1̃(J1(. )J1)J1 ⊗ id we have α1̅̅ ̅′(p′) = p′. 

Define the map Φ2: M1 ⊗‾ ℂ𝟏L → (M1 ⊗‾ ℂ𝟏L)p′ as Φ2(a ⊗ 𝟏L) = (a ⊗ 𝟏L)p′, a ∈ M1. 

Then 
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(Φ2 ∘ α1̃)(a ⊗ 𝟏L)  = Φ2(α1̃(a ⊗ 𝟏L)) = Φ2(α1(a) ⊗ 𝟏L)

 = (α1(a) ⊗ 𝟏L)p′ = α1̃(a ⊗ 𝟏L)p′

 = α‾1((a ⊗ 𝟏L)p′) = α‾1(Φ2(a ⊗ 𝟏L))

 = (α‾1 ∘ Φ2)(a ⊗ 𝟏L)

 

hence Φ2 ∘ α̃1 = α‾1 ∘ Φ2. Since p′ξ = p′((𝟏 ⊗ 𝟏L)ξ) = p′(Φ1(𝟏)ξ) = Φ1(𝟏)ξ = ξ, we 

have 

⟨(Φ2 ∘ Φ1)(a)ξ, ξ⟩ = ⟨(Φ2(a ⊗ 𝟏Lr
)) ξ, ξ⟩ = ⟨(a ⊗ 𝟏Lr

)p′ξ, ξ⟩

= ⟨(a ⊗ 𝟏Lr
)ξ, ξ⟩ = ⟨Φ1(a)ξ, ξ⟩ = φ(a),

 

for all a ∈ (M1, α1), i.e. φ(a) = ⟨(Φ2 ∘ Φ1)(a)ξ, ξ⟩. Now, define a linear map 

u: Φ((M1, α1))η → p′(H1
r ⊗ Lr) as follows: 

uΦ(a)η = (Φ2 ∘ Φ1)(a)ξ = p′(aξn) = (aξn) (a ∈ (M1, α1)). 

Since uΦ(a)η = (Φ2 ∘ Φ1)(a)ξ and ⟨Φ(a)η, η⟩ = φ(a) = ⟨(Φ2 ∘ Φ1)(a)ξ, ξ⟩ (a ∈

(M1, α1)), it follows that ∥ uΦ(a)η ∥′=∥ Φ(a)η ∥2
r , i.e. the map u is an isometry, where 

∥⋅∥2
r  is the norm of the space H2 and ∥⋅∥′ is the norm of the space H1

r ⊗ Lr. Moreover, 

since Φ((M1, α1))η = (M2, α2)η,  (Φ2 ∘ Φ1)((M1, α1))ξ = Φ1((M1, α1))ξ and 

Φ((M1, α1))η̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = (M2, α2)η̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = H2
r

((M1, α1))ξ = Φ1((M1, α1))ξ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ = p′(H1
r ⊗ Lr)

 

u can be extended to a unitary operator u‾: H2
r → p′(H1

r ⊗ L). Clearly, 

u‾Φ(a)u‾−1 = Φ2 ∘ Φ1(a),  a ∈ (M1, α1). 

Therefore we can define a spatial real ∗-isomorphism Φ3: ((M1, α1) ⊗‾ ℝ𝟏Lr
) p′ → 

(M2, α2) as Φ3(. ) = u‾ −1(. )u‾ , and it can be extended to a spatial *-isomorphism (still 

denoted by Φ3)Φ3: (M1ℂ̅L)p′ → M2 as Φ3(a + ib) = Φ3(a) + iΦ3(b), where a, b ∈

((M1, α1) ⊗‾ ℝ𝟏Lr
) p′. Then, we have Φ = Φ3 ∘ Φ2 ∘ Φ1. 

Considering now the general case, the real Hilbert space H2
r  with H2

r + iH2
r = H2 can 

be decomposed as H2
r =⊕l H2

l   and H2
l = (M2, α2)ηl

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,   where ηl ∈ H2
r ,   for l ∈ ℕ. Let 

ql
′: H2

r → (M2, α2)ηl
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ = H2

l  be the projection. Then ql
′ ∈ (M2, α2)′, for all l. For each 

l, Φl = ql
′Φ: (M1, α1) → (M2, α2)ql

′ is a normal *-homomorphism, which can be 

extended to a normal *-homomorphism Φl: M1 → M2ql
′. Then, by the above argument 

Φl = Φ3
(l)

∘ Φ2
(l)

∘ Φ1
(l)

, for all l. Set Φi =⊕l Φi
(l)

, i = 1,2,3. Then Φ = Φ3 ∘ Φ2 ∘ Φ1 and 

the maps Φ3, Φ2, Φ1 satisfy all our conditions. 

 

 

Theorem 6 
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Let M be a finite factor and let α be an involutive * antiautomorphism of M. If {π, H} is 

a faithful nondegenerate W∗-representation of M and π ∘ α = α̃ ∘ π for an involutive "-

antiautomorphism α̃ of π(M), then there exist a projection p′ ∈ (λr(M, α) ⊗ 𝟏Kr
)

′
, and 

a unitary operator u: Hr → p′(L2(M, α) ⊗ Kr) such that 

uπ(x) = (λ(x) ⊗ 𝟏K)u,  x ∈ M, 

i.e., the real W∗-algebras π(M, α)(= (π(M), α̃)) and (λr(M, α) ⊗ 𝟏Kr
)p′ are spatially *-

isomorphic and therefore the W∗-algebras π(M) and (λ(M) ⊗ 𝟏K)p′ are also spatially 

* isomorphic; where Kr is a separable infinite dimensional Hilbert space, and K = Kr +

iKr 

 

Proof 

Set M1 = λ(M) and M2 = π(M). Define the map Φ: M1 → M2 by Φ(λ(x)) = π(x). Then 

Φ is a *-isomorphism and Φ(λr(M, α)) ⊂ (π(M), α‾). Now the conclusion follows 

immediately from Theorem 5 and the separability of H. 
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